
Solving Exists/Forall Problems With Yices

Extended Abstract

Bruno Dutertre

Computer Science Laboratory
SRI International

Bruno.Dutertre@sri.com

Abstract

Yices now includes a solver for Exists/Forall problem. We describe the problem, a
general solving algorithm, and a key model-based generalization procedure. We explain
the Yices implementation of these algorithms and survey a few applications.

1 Introduction

The traditional SMT problem is to determine whether a quantifier-free formula Φ(x) is sat-
isfiable. Some solvers can also handle first-order formulas with arbitrary quantifiers. We
are concerned with a simpler case, namely, formulas of the form ∀y.Φ(x, y), where Φ(x, y)
is quantifier-free. Implicitly, the variables x are existentially quantified: we are checking the
satisfiability of formulas of the form ∃x.∀y.Φ(x, y), thus, we will follow tradition and call this
problem Exists/Forall SMT solving or EF solving for short. As in general SMT solving, we
are not just interested in a yes or no answer. We want to produce a model when the formula
is satisfiable. Our actual problem is then to search for a vector of values a for the existential
variables, such that ∀y.Φ(a, y) is true.

EF solving naturally occurs in many synthesis problems. For example, assume we are given
a transition systemM and we want to show that a property P is invariant forM. We assume
M is specified by an initialization formula I(s) over state variables S and a transition formula
T (s, s′) over current and next-state variables S and S′. Showing that P is invariant typically
requires finding an auxiliary inductive invariant Q that implies P . In other words, Q must
satisfy three constraints:

∀s.I(s)⇒ Q(s) ∀s, s′.Q(s) ∧ T (s, s′)⇒ Q(s′) ∀s.Q(s)⇒ P (s).

Automatically constructing such a predicate Q is not trivial. A simplification is to restrict the
search space by specifying a template for Q. Such a template is a formula of the form Q(t, s)
where s denotes the state variables of M as before, and t is a finite set of parameters. The
problem is now to find values for the parameters such that

[∀s.I(s)⇒ Q(t, s)] ∧ [∀s, s′.Q(t, s) ∧ T (s, s′)⇒ Q(t, s′)] ∧ [∀s.Q(t, s)⇒ P (s)].

Modulo minor syntactic rewriting, this is an Exists/Forall problem.
Template-based methods have many applications including reverse engineering of hard-

ware [4], program verification [6, 7], hybrid and continuous dynamical systems [14, 15, 2],
geometry [5], and program synthesis [13, 12, 9].

We present the algorithm for solving Exists/Forall problems currently implemented in Yices.
We discuss some implementation issues and we survey example applications.

1

Solving EF Problems With Yices Bruno Dutertre

i := 0
C0(x) := Initial constraints on x

Repeat

find ai that satisfies Ci(x) [E-Solver]
if no ai is found, return unsat

search for bi that satisfies ¬Φ(ai, y) [F-Solver]
if no bi is found, then ai is a solution;

return sat

Generalize from bi: compute a constraint G(x) such that
1) G(ai) is true
2) G(x) ⇒ (∃y : ¬Φ(x, y))

Ci+1(x) := Ci(x) ∧ ¬G(x)
i := i + 1

end

Figure 1: Two-Solver Procedure for the EF Problem ∃x∀yΦ(x, y)

2 SMT-Based EF Solving

In principle, many EF problems could be solved using quantifier-elimination methods: rewrite
∀y.Φ(x, y) into a an equivalent quantifier-free formula Φ′(x) then check whether Φ′(x) is sat-
isfiable. Quantifier elimination is applicable for theories such as linear arithmetic or when the
universal variables have a finite domain. However, quantifier elimination is typically very ex-
pensive and requires specialized algorithms. It also does more than we need. The formula Φ′(x)
characterizes all the solutions to the original problem. We need only one.

An alternative is to combine two ordinary SMT solvers for quantifier-free formulas. A first
solver (the E-Solver) generates candidate solutions for the existential variables x. Another
solver (the F-Solver) checks whether a candidate solution a is correct, by trying to refute the
formula Φ(a, y). The general procedure is sketched in Figure 1:

• Formula Ci(x) encodes the set of potential candidate for the existential variables.

• At each iteration of the loop, the E-solver checks satisfiability of Ci(x). If the formula is
not satisfiable, all candidates have been eliminated so the EF problem is unsatisfiable.

• If Ci(x) is satisfiable, then the E-solver produces a candidate ai. The F-solver checks
whether ai is correct by checking satisfiability of the formula ¬Φ(ai, y). If this formula is
not satisfiable, then ai is a solution to the EF problem otherwise the F-Solver produces a
counterexample bi.

• A key part of the algorithm is to generalize this counterexample. Abstractly, a general-
ization procedure must construct a formula G(x) (using ai and bi) that eliminates invalid
candidates for the existential variables. As stated in Figure 1, G(x) must satisfy two
requirements:

– G(ai) is true (so that at least ai is removed from the set of candidates).

– G(x)⇒ (∃y.¬Φ(x, y)) is valid (no x that satisfies G(x) is a good candidate).

The set of candidates Ci+1(x) is then updated accordingly and the loop repeats.

2

Solving EF Problems With Yices Bruno Dutertre

Section 4 describes how we compute the initial constraints in Yices. This is not as important
as the generalization procedure and it is always safe to simply set C0(x) to true.

For the generalization procedure, a baseline is to use

G(x) := (x = ai),

which just removes the current candidate ai. This basic form is sound but it does not take
the counterexample bi into account. A more effective approach is to remove all candidates for
which bi is a counterexample. We call this generalization by substitution:

G(x) := ¬Φ(x, bi).

If the variables x have a finite domain, then the algorithm obviously terminates. It also ter-
minates if the variables y have a finite domain and generalization by substitution is used. In
other cases, a more powerful generalization method is required. For example, the following EF
problem in linear arithmetic is not satisfiable

∃x.∀y.x < y,

but generalization by substitution does not converge on this input. To solve EF problems in
linear real arithmetic, Yices includes a generalization method based on projection. This method
is described in the next section and it can be seen as a form of quantifier elimination that is
directed by the model. A similar technique was proposed in the context of property-directed
reachability by Komuravelli et al. [10].

3 Model-Guided Generalization

Generalization from a model starts with a quantifier-free formula F whose variables are split
into two sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}. To simplify the presentation, we assume
in this section that all the variables are real-valued and that F is a linear arithmetic formula.
More precisely, we assume that F is a formula in the logic defined by the following grammar:

t := c | xi | yj | t+ t | c.t
l := (t > 0) | (t ≤ 0) | (t = 0)

f := l | (¬f) | (f ∨ f) | (f ∧ f)

where c can be any rational constant. Let M be a model of F . Our goal is to construct a
formula G that contains only the variables X and such that G⇒ (∃y1, . . . , ym.F). In addition,
G must be true in M.

We proceed in two steps. First, we construct an implicant B of F based on the model M.
Then, we eliminate the Y variables from B, again by taking advantage of the model M.

3.1 Implicant

The implicant B is a conjunction of arithmetic literals that implies F and such that B is true
in M. We also ensure that no literal of B is of the form ¬(t = 0). The implicant can be easily
constructed by a top-down traversal of the formula F . We can use the following rules and set

3

Solving EF Problems With Yices Bruno Dutertre

B := Imp+(F).

Imp+(l) := l

Imp+(f1 ∨ f2) := Imp+(f1) if f1 is true in M
:= Imp+(f2) otherwise

Imp+(f1 ∧ f2) := Imp+(f1) ∧ Imp+(f2)

Imp+(¬f) := Imp−(f)

Imp−(t = 0) := (t > 0) if t has a positive value in M
:= ¬(t ≥ 0) if t has a negative value in M

Imp−(t > 0) := ¬(t > 0)

Imp−(t ≥ 0) := ¬(t ≥ 0)

Imp−(f1 ∨ f2) := Imp−(f1) ∧ Imp−(f2)

Imp−(f1 ∧ f2) := Imp−(f1) if f1 is false in M
:= Imp−(f2) otherwise

Imp−(¬f) := Imp+(f)

In these rules, Imp+(f) is an implicant of a formula f if f true in M and Imp−(f) is an
implicant of ¬f when f is false in M.

3.2 Variable Elimination

After the implicant is computed, we can further normalize the literals of B to replace ¬(t > 0)
by −t ≥ 0 and ¬(t ≥ 0) by −t > 0. Without loss of generality, we can then assume that B is
a conjunction of arithmetic atoms containing the variables X and Y . It remains to eliminate
the variables Y from these atoms. One could use Fourier-Motzkin elimination but this is not
practical in general as it may cause an exponential blowup in the number of atoms.

A key observation is that we do not need to preserve equivalence. In our application, it is
enough to construct a formula G such that

G⇒ (∃y1, . . . , ym.B).

As noted in [10], we can compute such a G efficiently by employing ideas related to virtual term
substitution [17, 11, 18].

Virtual substitution methods eliminate quantifiers by computing so-called elimination sets.
Given a formula φ and a variable y that is free in φ, an elimination set for the variable y is a
finite set V of terms that do not contain y and such that

(∃y : φ)⇔
∨
t∈V

φ[t/y].

Since we do not need to preserve equivalence, it is sufficient in our context to pick a single term
t out of V . We then obtain

φ[t/y] ⇒ (∃y : φ).

We also have a model M of φ at our disposal and the choice of t is guided by this model. We
must pick a term t such that φ[t/y] is true in M.

4

Solving EF Problems With Yices Bruno Dutertre

Virtual term substitution can be complex. For many theories, the substitution set may
contain terms—such as infinity, square roots, or infinitesimals—that are not formally in the
logic. The virtual substitution φ[t/y] must ensure that such terms do not occur in the resulting
formula. In our context, everything is simple and ordinary substitution works fine. The main
step in our variable-elimination algorithm removes a single variable y from a conjunction of
linear inequalities. For example, consider a conjunction φ of the form∧

j

(y > tj) ∧
∧
k

(y < uk)

where tj and uk are linear-arithmetic terms that do not contain y. We first evaluate all the
terms tj and uk in the model M. Let tj0 be a term that has maximal value in M among all
tjs and let uk0

be a term that has minimal value in M among all uks, then we use

t :=
tj0 + uk0

2

as the substitution term. The resulting φ[t/y] is (
∧

j(t > tj)∧
∧

k(t < uk)), which is true inM.
Each variable-elimination step takes a conjunction of arithmetic atoms as input. It picks a

universal variable y to eliminate, constructs an elimination term t as sketched previously, then
replaces y by t. The substitution does not cause an increase in the number of atoms and the
result is a conjunction of arithmetic atoms. We can then iterate this procedure to eliminate all
the universal variables one by one.

3.3 Properties

The model-guided quantifier elimination procedure satisfies our requirements. Given an initial
formula F and a model M, it constructs a formula G that does not contain the variables Y
and such that G ⇒ (∃y1, . . . , ym.F) and G is true in M. The procedure also ensures that G
is a conjunction of arithmetic atoms. Furthermore, there are finitely many possible such G’s
for a given formula F . This follows from the fact that F has finitely many implicants (as we
construct them) and that there are finitely many choices for the variable y and term t in each
variable-elimination step. Employing this generalization algorithm ensures then that the EF
solver loop (Fig. 1) terminates.

4 Implementation Details

We now discuss a few implementation issues.

4.1 Preprocessing

So far, we have considered problems of the form ∃x.∀y.Φ(x, y). In practice, Yices works on
problems of the form

∃x : A(x)
∧ (∀y1 : B1(y1) ⇒ D1(x, y1))

...
∧ (∀yk : Bn(yk) ⇒ Dk(x, yk))

Any EF problem can be written in this format. This amounts to pushing the universal quan-
tifiers inside the formula Φ (this is known as miniscoping). It is also important to eliminate
variables by substitution whenever possible as explained in [4].

5

Solving EF Problems With Yices Bruno Dutertre

4.2 Initial Constraints on Existential Candidates

To learn initial constraints on the existential variables, a simple approach is to compute a sample
of values b1, . . . , bt for the universal variables then substitute these values for y in Φ. This gives
C0(x) := Φ(x, b1)∧ . . .∧Φ(x, by), which helps provided the subformulas Φ(x, bj) are not trivially
true. To find the samples, Yices takes advantage of formulas of the form ∀y : B(y) ⇒ D(x, y)
that may result from preprocessing. Given such a formula, we can search for models of B(y).
Each such model gives a sample bi and we learn an initial constraint D(x, bi), which is not likely
to reduce to true.

4.3 Implicant Construction

We have glossed over the details of implicant computation. In practice, the formulas are not
as simple as presented in section 3.1. The implementation supports the full Yices 2 language
and can process if-then-else terms and atoms such as (distinct t1 . . . tk). For example, an
implicant for 1 + (ite c u v) ≥ 0 can be either c ∧ 1 + u ≥ 0 or ¬c ∧ 1 + v ≥ 0, depending on
whether c is true or false in the model.

It is also useful to preserve equalities between Boolean terms. If t is a Boolean variable, Yices
treats the formula t ⇔ u as an atomic equality (to enable variable substitution). Otherwise,
the formula t ⇔ u is treated as the equivalent formula (t ∧ u) ∨ (¬t ∧ ¬u).

4.4 Variable Elimination

The actual variable elimination algorithm implemented in Yices uses a hybrid of virtual-term
substitution and Fourier-Motzkin elimination. It first eliminates variables by Gaussian elim-
ination if the implicant B contains arithmetic equalities. After this, all the atoms are linear
inequalities. Yices then applies Fourier-Motkzin elimination when it is cheap (i.e., when it
does not increase the total number of atoms) in preference to the virtual-substitution method
presented in Section 3.2.

5 Example Applications

We survey recent applications of Yices to different classes of EF problems.

5.1 Control and Priority Synthesis

Cheng et al. [2] apply EF-SMT to design and verification problems related to Cyber-physical
systems. The software and examples used by Cheng are available at http://www6.in.tum.de/

~chengch/efsmt/. The implementation used an older version of Yices 2 as a backend SMT
solver. Several of the example problems involve non-linear arithmetic constraints over the reals,
but Cheng converted them all to finite-precision bitvector arithmetic.

Figure 2 shows one of Cheng’s example converted to the Yices syntax. This example synthe-
sizes a Lyapunov function to prove stability of a simple dynamical system. The specifications
start with the declaration of two bitvector variables a and r, which are two coefficients in the
Lyapunov function. Thus, a and r are the existential variables of this problem. The first as-
sertion in Figure 2 gives lower and upper bounds on a and r. The universal variable z occurs
under the forall quantifier in the second assertion. It denotes the state of the dynamical
system. The command (ef-solve) checks satisfiability of these constraints using Yices’s EF
solver then (show-model) displays the result. In this case, Yices produces:

6

http://www6.in.tum.de/~chengch/efsmt/
http://www6.in.tum.de/~chengch/efsmt/

Solving EF Problems With Yices Bruno Dutertre

(define a :: (bitvector 20))

(define r :: (bitvector 20))

(assert

(and (bv-slt 0b00000000000000000000 a) (bv-slt 0b00000000000000000000 r)

(bv-slt a 0b00000000110010000000) (bv-slt r 0b00000000110010000000)))

(assert

(forall (z :: (bitvector 20))

(=>

(and (bv-slt 0b00000000000000000000 (bv-add 0b00000000000000000001 r z))

(bv-slt (bv-add 0b11111111111111111111 (bv-mul 0b11111111111111111111 r) z)

0b00000000000000000000)

(/= z 0b00000000000000000000))

(and

(=>

(bv-sge (bv-mul 0b00000000000001000000 a) 0b00000000000000000000)

(or

(bv-sge (bv-add 0b11111111111111111111 z) 0b00000000000000000000)

(and (bv-sge (bv-add 0b11111111111111111111 z) 0b11111111111111000000)

(bv-sge 0b00000000000000000000 (bv-add 0b00000000000000000001 z)))))

(or (bv-sge (bv-mul 0b00000000000001000000 a) 0b00000000000000000000)

(bv-sge 0b11111111111110100000 (bv-add 0b00000000000000000001 z)))))))

(ef-solve)

(show-model)

Figure 2: Example EF Problem from [2] in the Yices Syntax

Run times in ms

Solver Control Prio. Synth.

Cheng 0 0 10 10 20 20 170 2430 6740
Yices 0 0 4 8 4 4 16 96 176

Number of iterations

Solver Control Prio. Synth.

Cheng 2 2 3 7 4 4 18 111 11
Yices 1 1 4 7 1 1 10 68 6

Table 1: Results on Small Problems

sat

(= a 0b00000000100000000000)

(= r 0b00000000000000100000)

All examples in [2] are relatively small. Four examples are related to control and are encoded
in bitvector arithmetic. Five more examples are purely Boolean and correspond to priority syn-
thesis in the BIP framework [1]. Table 1 shows the runtime of Yices on these problems. For
comparison, the table also shows the runtime of Cheng’s original EF-SMT solver implementa-
tion, which was an outer loop making calls to Yices’s API. Cheng’s outer loop had a significant
overhead and the new EF solver in Yices is considerably more efficient.

7

Solving EF Problems With Yices Bruno Dutertre

10-2 10-1 100 101 102 103 104

Time to solve (seconds)

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f i
ns

ta
nc

es
 s

ol
ve

d

YICES_EF+PB
Z3+
FUJITA+

YICES_EF-
Z3-
FUJITA-

Figure 3: Performance of EF Solvers on Hardware Problems

5.2 Reverse Engineering of Hardware

Gascón et al. [4] use the Yices EF-SMT solver in reverse engineering of hardware. The goal is to
identify the functionality of a low-level combinational circuit by searching for a match in a fixed
library of known components. For example, we may be given a gate-level circuit description C
and attempt to show that it implements an n-bit adder. The main difficulty is that the roles of
the input and output ports of C are not known. One must discover how to map these ports to
the input or output bits of an adder. In general, the problem is more complex as one may have
to treat inputs of C as control signals and show that C behaves like an adder only for some
values of these control input.

As shown in [4], this matching problem can be formulated as an EF problem over the
Booleans (or bitvectors). The encoding uses a signature-based simplification technique to stat-
ically detect that pairs of input signals cannot be matched. This simplification is important

Figure 3—reproduced from [4]—shows empirical results on 39 benchmarks. The graph
shows the runtimes and number of benchmarks solved by Yices and two other solvers. These
experiments used a timeout of 3600s of CPU time. The problem can be solved using Z3’s support
for quantified bitvector constraints [19] and with a specialized form of 2QBF solver [8, 3] that
is referred to as Fujita in the figure. The positive and negative signs in the figure correspond
to two encodings of permutation that differ in the polarity of literals (see [4] for details). The
encoding used has a significant impact on the performance of Yices and Z3. We should also
point that off-the-shelf QBF solvers did not work well on these benchmarks.

5.3 Program Synthesis

Ashish Tiwari and Adrià Gascón are developing Synudic, a program-synthesis framework that
relies on assigning a dual interpretation to basic components1. This approach is related to
program sketching [12]. Synudic includes a language for specifying sketches and basic program

1The tool is available at http://www.csl.sri.com/users/tiwari/softwares/auto-crypto/.

8

http://www.csl.sri.com/users/tiwari/softwares/auto-crypto/

Solving EF Problems With Yices Bruno Dutertre

components. Each basic component is defined by a signature and is given two interpretations.
The functional interpretation defines what the component does and a non-functional interpre-
tation captures additional properties.

For example, in a cryptographic application, one can declare a symbol oplus of arity two.
The functional interpretation specifies that oplus computes the bitwise XOR of its two ar-
guments. The non-functional interpretation captures cryptographic properties of XOR. This
abstract non-functional interpretation can be seen as a type system that rules out insecure
combinations of components.

The Synudic tool converts the input specification into an Exists/Forall problem and uses
Yices 2 as backend solver. Using this method, one can automatically generate straight-line
bitvector manipulation programs, padding schemes for public-key encryption, and synthesize
block cipher modes of operations. More details on the tools and example applications are
presented in a forthcoming paper [16]. A particularly promising feature of Synudic is the
possibility of encoding constraints on the solution space using the non-functional interpretation.

6 Limitations and Future Work

Performance of the EF solving algorithm depends crucially on the generalization procedure. It
assumes that one can learn useful facts from a counterexample bi that satisfies ¬Φ(ai, y). This
hypothesis appear to hold in many applications, but it is easy to find counterexamples. For
example, consider the problem

∃x.∀y.x 6= h(y).

For this type of problems, the model-based generalization procedures discussed previously never
learn anything useful. A counterexample bi eliminates only one candidate value ai for the exis-
tential variables because we then have ai = h(bi). In such examples, model-based generalization
does not do better than our baseline, which consists of enumerating all candidates one by one.

We are currently developing support for non-linear real arithmetic in Yices, which we hope
will enable Yices to solve EF problems that are most relevant to analysis and synthesis for
dynamic and hybrid systems. We are also planning to extend the model-based generalization
procedures to linear integer arithmetic.

7 Conclusion

Exists/Forall solving is a useful functionality that can be implemented using existing SMT
solvers for quantifier-free formulas. It has many applications related to synthesis.

Generalizing from models is also a useful function of its own. It can be seen as complemen-
tary to interpolant construction, as it learns from a model rather than a proof of unsatisfiability.
Both model-based generalization and implicant construction are now part of the Yices API.

References

[1] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogenous real-time components in
BIP. In Software Engineering and Formal Methods (SEFM 2006), pages 2–12. IEEE Computer
Society Press, 2006.

[2] Chih-Hong Cheng, Natarajan Shankar, Harald Rueß, and Saddek Bensalem. EFSMT: A Logi-
cal Framework for Cyber-Physical Systems. arXiv:1306:3456b2 and http://www6.in.tum.de/

~chengch/efsmt/, June 2014.

9

http://www6.in.tum.de/~chengch/efsmt/
http://www6.in.tum.de/~chengch/efsmt/

Solving EF Problems With Yices Bruno Dutertre

[3] Masahiro Fujita, Satoshi Jo, Shohei Ono, and Takeshi Matsumoto. Partial synthesis through
sampling with and without specification. In Jörg Henkel, editor, The IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’13), pages 787–794, 2013.

[4] Adrià Gascón, Pramod Subramanian, Bruno Dutertre, Ashish Tiwari, Dejan Jovanović, and
Sharad Malik. Template-based circuit understanding. In Formal Methods in Computer-Aided
Design (FMCAD 2014), pages 83–90, October 2014. www.cs.utexas.edu/users/hunt/FMCAD/

FMCAD14.

[5] Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Synthesizing geometric construc-
tions. In PLDI’11: Proceedings of the 2011 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 50–61. ACM, June 2011.

[6] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program analysis as con-
straint solving. In PLDI’08: Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 281–292. ACM, 2008.

[7] Sumit Gulwani and Ashish Tiwari. Constraint-based approach for analysis of hybrid systems. In
Aarti Gupta and Sharad Malik, editors, Computer-Aided Verification (CAV’2008), volume 5123
of Lecture Notes in Computer Science, pages 190–203. Springer, 2008.

[8] Mikolás Janota and João P. Marques Silva. Abstraction-Based Algorithm for 2QBF. In Karem A.
Sakallah and Laurent Simon, editors, Theory and Applications of Satisfiability Testing (SAT 2011),
volume 6695 of Lecture Notes in Computer Science, pages 230–244. Springer, 2011.

[9] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-Guided Component-
Based Program Synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering (ICSE), pages 215–224, 2010.

[10] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-based model checking for recursive
programs. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification (CAV 2014),
volume 8559 of Lecture Notes in Computer Science, pages 17–34. Springer, 2014.

[11] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination. Computer Journal,
36(5):450–462, 1993.

[12] Armando Solar-Lezama. Program sketching. International Journal on Software Tools for Tech-
nology Transfer, 15(5–6):475–495, October 2013.

[13] Armando Solar-Lezama, Rodric Rabbah, Ratislav Bod́ık, and Kemal Ebcioğlu. Programming
by sketching for bit-streaming programs. In PLDI’05: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 281–294. ACM, June
2005.

[14] Thomas Sturm and Ashish Tiwari. Verification and synthesis using real quantifier elimination. In
Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, pages
329–336. ACM, 2011.

[15] Ankur Taly, Sumit Gulwani, and Ashish Tiwari. Synthesizing Switching Logic using Constraint
Solving. International Journal on Software Tools for Technology Transfer, 12(6):519–535, Novem-
ber 2011.

[16] Ashish Tiwari, Adrià Gascón, and Bruno Dutertre. Program synthesis using dual interpretation.
In 25th International Conference on Automated Deduction (CADE 2015), 2015. to appear.

[17] Volker Weispfenning. The complexity of linear problems in fields. Journal of Symbolic Computa-
tion, 5(1–2):2–27, February–April 1988.

[18] Volker Weispfenning. Quantifier eliminatio for real algebra — the quadratic case and beyond.
Applicable Algebra in Engineering, Communication and Computing, 8(2):85–101, January 1997.

[19] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura. Efficiently solving quan-
tified bit-vector formulas. Formal Methods in System Design, 42(1):3–23, 2013.

10

www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14
www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14

	Introduction
	SMT-Based EF Solving
	Model-Guided Generalization
	Implicant
	Variable Elimination
	Properties

	Implementation Details
	Preprocessing
	Initial Constraints on Existential Candidates
	Implicant Construction
	Variable Elimination

	Example Applications
	Control and Priority Synthesis
	Reverse Engineering of Hardware
	Program Synthesis

	Limitations and Future Work
	Conclusion

