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Abstract. We present a decision procedure for the theory of fixed-
sized bitvectors in the MCSAT framework. MCSAT is an alternative
to CDCL(T) for SMT solving and can be seen as an extension of CDCL
to domains other than the Booleans. Our procedure uses BDDs to record
and update the sets of feasible values of bitvector variables. For explain-
ing conflicts and propagations, we develop specialized word-level inter-
polation for two common fragments of the theory. For full generality,
explanation outside of covered fragments resort to local bit-blasting to
generate explanations. The approach is implemented in the Yices 2 SMT
solver and we present experimental results.

1 Introduction

Model-constructing satisfiability (MCSAT) [7, 15, 16] is an alternative to the
CDCL(T ) scheme [21] for Satisfiability Modulo Theories (SMT). While CDCL(T )
interfaces a CDCL SAT solver [19] with black-box decision procedures, MCSAT
integrates first-order reasoning into CDCL directly. As in CDCL, MCSAT alter-
nates between search and conflict analysis. In the search phase, MCSAT assigns
values to first-order variables and propagates unit consequences of these assign-
ments. If a conflict occurs during search, e.g., when the domain of a first-order
variable is empty, MCSAT enters conflict analysis and learns an explanation,
which is a symbolic representation of what was wrong with the assignments
causing the conflict. As in CDCL, the learned clause triggers backtracking from
which search can resume. Decision procedures based on MCSAT have demon-
strated strong performance in theories such as non-linear real [7] and integer
arithmetic [15]. These theories are relatively well-behaved and provide features
such as quantifier elimination and interpolation—the building blocks of conflict
resolution in MCSAT.

We describe an MCSAT decision procedure for the theory of bitvectors (BV).
In contrast to arithmetic, the complexity of features that BV offers in terms
of syntax and semantics, combined with the lack of word-level interpolation
and quantifier elimination, makes the development of BV decision procedures
(MCSAT or not) very difficult. The state-of-the art BV decision procedures are
all based on a “preprocess and bitblast” pipeline [10,18,20]: they reduce the BV
problems to a pure SAT problem by reducing the word-level semantics to bit-
level semantics. Exceptions to the bit-blasting approach do exist, such as [3,13]
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and the MCSAT approach of [22], but these methods generally do not perform
as well as bitblasting, except on a small classes of crafted examples.

An MCSAT decision procedure must provide two theory-specific reasoning
mechanisms.

First, for each variable, the procedure must maintain a set of values that are
feasible for that variable. This set is updated during the search. It is used to
propagate variable values and to detect a conflict when the set becomes empty.
Finding a suitable representation for domains is a key step in integrating a the-
ory into MCSAT. We represent variable domains with Binary Decision Diagrams
(BDDs) [4]. BDDs can represent any set of bitvector values. By being canonical,
they offer a simple mechanism to detect when a domain becomes a singleton—
in which case MCSAT can perform a theory propagation—and when a domain
becomes empty–in which case MCSAT enters conflict analysis. In short, BDDs
offer a generic mechanism for proposing and propagating values, and for de-
tecting conflicts. In contrast, previous work by [22] represents bitvector domains
using intervals and patterns, which cannot represent every set of bitvector values
precisely; they over-approximate the domains.

Second, once a conflict has been detected, the procedure must construct a
symbolic explanation of the conflict. This explanation must rule out the partial
assignment that caused the conflict, but it is desirable for explanations to gen-
eralize and rule out larger parts of the search space. For this purpose, previous
work [22] relied on incomplete abstraction techniques (replace a value by an in-
terval; extend a value into a larger set by leaving some bits unassigned). Instead
of aiming for a uniforms, generic explanation mechanism, we take a modular
approach. We develop efficient word-level explanation procedures for two useful
fragments of BV. Our first fragment includes bitvector equalities, extractions,
and concatenations where word-level explanations can be constructed through
model-based variants of classic equality reasoning techniques (e.g., [3,6,8]). Our
second fragment is a subset of linear arithmetic where explanations are con-
structed by interval reasoning in modular arithmetic. When conflicts do not fit
into either fragment, we build an explanation by bitblasting and extracting an
unsat core. Although this fallback produces theory lemmas expressed at the bit-
level, it is used only as a last resort. In addition, this bitblasting-based procedure
is local and limited to constraints that are relevant to the current conflict; we
do not apply bitblasting to the full problem.

Section 2, is an overview of MCSAT. It also presents the BDD approach
and general considerations for conflict explanation. Section 3 describes our in-
terpolation algorithm for equality with concatenation and extraction. Section 4
presents our interpolation method for a fragment of linear bitvector arithmetic.
Section 5 presents the normalization technique we apply to conflicts in the hope
of expressing them in that bitvector arithmetic fragment. Our approach is im-
plemented in the Yices 2 solver [9]. We present an evaluation of the approach in
Section 6.1

1 This paper extends preliminary results presented at the SMT workshop [11,12] and
includes a full implementation and experimental evaluation.
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2 A General Scheme for Bitvectors

By BV, we denote the theory of quantifier-free fixed-sized bitvectors. (It is also
known as QF_BV in SMT-LIB.) A model of a BV formula Φ is an assignment
that gives a bitvector value to all bitvector variables (and a Boolean value to
all Boolean variables) of Φ, in such a way that Φ evaluates to true, under the
standard interpretation of Boolean and bitvector symbols.

The theory includes many operators but we will use only a few of them. We
write |u| for the bitwidth of u; t ◦ u is the concatenation of bitvectors t and u;
<u, ≤u denote unsigned comparisons, and <s, ≤s denote signed comparisons. In
all such comparisons we assume that both operands have the same number of
bits. If u is a bitvector of n bits, and l and h are two integer indices such that
0 ≤ l < h ≤ n, then u[h:l], extracts h − l bits of u, namely the bits at indices
between l and h − 1 (included). We write u[:l] and u[h:] as abbreviations for
u[n:l] and u[h:0], respectively. Our convention is to have bitvector indices start
from the right-hand side, so that bit 0 is the right-most bit and 0011[2:] is 11.
We also denote a single-bit extraction by u[l]; this is the same as u[l + 1:l].

We use usual notations for bitvector arithmetic, which coincides with arith-
metic modulo 2w where w is the bitwidth. We sometimes use integer constants
e.g., 0, 1, −1 for bitvectors when the bitwidth is clear.

2.1 MCSAT Overview

MCSAT searches for a model by building a partial assignment—maintained in
a trail—and extends the concepts of unit propagation and consistency to first-
order terms and literals [7, 15, 16]. Reasoning is implemented by theory-specific
plugins, each of which has a partial view of the trail. In the case of BV, the
bitvector plugin sees the following information: an assignment M of the form
x1 7→ v1, . . . , xn 7→ vn that gives values to bitvector variables, and a set of bitvec-
tor literals L1, . . . , Lt that must be true in the current trail. For the bitvector
plugin, the trail is evaluation consistent if none of the literals Li evaluates to
false under M; either Li is true or some variable of Li has no value in M. A
related property is unit (in)consistency: We say that literal Li is unit in y if y
is the only unassigned variable of Li. A trail is unit inconsistent if there is such
a y and a subset {C1, . . . , Cm} of {L1, . . . , Lt}, such that every Cj is unit in y
and the formula ∃y(C1 ∧ · · · ∧ Cm) evaluates to false underM. In such a case,
y is called a conflict variable and C1, . . . , Cm are called conflict literals.

When such a conflict is detected, the current assignment M cannot be ex-
tended to a full model; some values assigned to x1, . . . , xn must be revised. As
in CDCL, MCSAT backtracks and updates the current assignment by learning a
new clause that explains the conflict. This new clause must not contain other
variables than x1, . . . , xn and it must rule out the current assignment. For some
theories, this conflict explanation can be built by quantifier elimination. More
generally, we can build an explanation from an interpolant.
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Definition 1 (Interpolant). A clause I is an interpolant for {C1, . . . , Cn}
at M, if (1) C1 ∧ . . . ∧ Cn ⇒ I is valid (in BV), (2) I only contains variables
x1, . . . , xn, and (3) I evaluates to false inM.

Given an interpolant I, the conflict explanation is just the clause C1∧ . . .∧Cn ⇒
I. Our main goal is constructing interpolants in BV.

2.2 BDD Representation

To detect conflicts, we must keep track of the set of feasible values for every
unassigned variable y. These sets are frequently updated during search so an
efficient representation is critical. The following operations must be performed
efficiently:
– updating the set when a new constraint becomes unit in y,
– detecting when the set becomes empty,
– selecting an value from the set.
For BV, Zeljić et al. [22] represent sets of feasible values using both inter-

vals and bit patterns. For example, the set defined by the interval [0000, 0011]
and the pattern ???1 is the pair {0001, 0011} (i.e., all bitvectors in the interval
whose low-order bit is 1). This representation is lightweight and efficient but it
is not precise. Some sets are not representable exactly. We use Binary Decision
Diagrams (BDD) [4] over the bits of y. The major advantage is that BDDs can
encode exactly any set of values for y. There is a risk that the BDD representa-
tion explode but this risk is reduced in our context since we build BDDs for a
single variable (and most variables do not have too many bits).

Updating sets of values amounts to computing the conjunction of BDDs (i.e.,
set intersection). Detecting that the set is empty is checking whether the BDD
is false, and selecting a value in the set is just a top-down traversal of the BDD
data structure. All these operations are efficiently implemented on BDDs.

2.3 Baseline Conflict Explanation

Given conflict as describe previously, the clause (x1 6' v1)∨· · ·∨(xn 6' vn) satisfies
the requirements of Definition 1, which gives the following trivial conflict clause:

C1 ∧ · · · ∧ Cm ⇒ (x1 6' v1) ∨ · · · ∨ (xn 6' vn)
This clause eliminates only the currentM. We seek to generalize the model to
rule out bigger parts of the search space. A first improvement is replacing the
constraints by a core C, that is, a minimal subset of {C1, . . . , Cn} that evaluates
to false inM.2

To produce the interpolant I, we can bit-blast the constraints C1, . . . , Cm
and solve the resulting SAT problem under the assumptions that each bit of
x1, . . . , xn is true or false as indicated by the values v1, . . . , vn. Since the SAT
problem encodes a conflict, the SAT solver will return am unsat core, from
which we can extract bits of v1, . . . , vn that contribute to unsatisfiability. This
generalizesM by leaving some bits unassigned, as in [22].
2 In our implementation, we construct C using the QuickXplain algorithm [17].
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This method is general. It works whatever the constraints C1, . . . , Cm, so we
use it as a default procedure. The bit-blasting step focuses on constraints that
are unit in y, which typically leads to a much smaller SAT problem than bit-
blasting the whole problem from the start. However, the bit-blasting approach
can still be costly and it may produce weak explanations.

Example 1. Consider the constraints {x1 6' x2, x1' y, x2' y} and the assign-
ment x1 7→ 1001, x2 7→ 0101. The bit-blasting approach might produce explana-
tion (x1' y ∧ x2' y)⇒ (x1[3]⇒ x2[3]). After backtracking, we might similarly
learn that (x2[3] ⇒ x1[3]). In this way, it will take eight iterations to learn
enough information to represent the high-level explanation:

(x1' y ∧ x2' y)⇒ x1' x2 .

A procedure that can produce (x1' x2) directly is much more efficient.

3 Equality, Concatenation, Extraction

Our first specialized interpolation mechanism applies when constraints C =
{C1, . . . , Cm} belong to the following grammar:

Constraints C ::= t' t | t 6' t
Terms t ::= e | y[h:l] | t ◦ t

where e ranges over any bitvector expressions such that y 6∈ fv(e). Without loss
of generality, we can assume that C is a core. We split C into a set of equalities
E = {ai' bi}i∈E and a set of disequalities D = {ai 6' bi}i∈D.

Slicing. Our first step rewrites C into an equivalent sliced form. This computes
the coarsest-base slicing [3, 6] of equalities and disequalities in C. The goal of
this rewriting step is to split the variables into slices that can be treated as
independent terms. The terms in coarsest-base slicing are either of the form
y[h:l] (slices), or are evaluable terms e with y 6∈ fv(e).

Example 2. Consider the constraints E = {x1[4:0]' x1[8:4], y[6:2]' y[4:0]} and
{y[4:0] 6' x1[8:4]} over variables y of length 6, and x1 of length 8. We cannot
treat y[6:2] and y[4:0] as independent terms because they overlap. To break
the overlap, we introduce slices: y[6:4], y[4:2], and y[2:0]. Equality y[6:2]' y[4:0]
is rewritten to (y[6:4]' y[4:2]) ∧ (y[4:2]' y[2:0]). Disequality y[4:0] 6' x1[8:4] is
rewritten to (y[4:2] 6' x1[8:6]) ∨ (y[2:0] 6' x1[6:4]). The final result is
Es = { x1[4:2]' x1[8:6] , x1[2:0]' x1[6:4] , y[6:4]' y[4:2] , y[4:2]' y[2:0] } ,

Ds = { (y[4:2] 6' x1[8:6]) ∨ (y[2:0] 6' x1[6:4]) }.

Explanations. After slicing, we obtain a set Es of equalities and a set Ds that
contains disjunctions of disequalities. We can treat each slice as a separate vari-
able, so the problem lies within the theory of equality on a finite domain.

We first analyze the conflict with equality reasoning against the model, as
shown in Algorithm 1. We construct the E-graph G from Es [8], while also
taking into account the partial modelM that triggered the conflict. The model
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Algorithm 1 E-graph with value management
1: function e_graph(Es,M)
2: Initialize(G) . each evaluable term or slice is its own component
3: for t1' t2 ∈ Es do
4: t′1 ← rep(t1,G) . get representative for t1’s component
5: t′2 ← rep(t2,G) . get representative for t2’s component
6: if y 6∈ fv(t′1) and y 6∈ fv(t′2) and [[t′1]]M 6= [[t′2]]M then
7: raise_conflict(E ⇒ t′1' t′2) . D must be empty
8: t3 ← select(t′1, t′2) . select representative for merged component
9: G ← merge(t1, t2, t3,G) . merge the components with representative t3

10: return G

can evaluate terms e such that y 6∈ fv(e) to values [[e]]M, and those can be the
source of the conflict. To use the model for evaluating terms, we maintain two
invariants during E-graph construction:
1. If a component contains an evaluable term c, then the representative of that

component is evaluable.
2. Two evaluable terms c1 and c2 in the same component must evaluate to the

same value, otherwise this is the source of the conflict.
The E-graph construction can detect and explain basic conflicts between the
equalities in E and the current assignment.

Example 3. Let r1, r2, r3 be bit ranges of the same width. Let E be such that
Es = {x1[r1]' y[r3], x2[r2]' y[r3]}, and let D = ∅. Consider the modelM :=
x1 7→ 0 . . . 0, x2 7→ 1 . . . 1. Then, e_graph(Es,M) produces the conflict clause
E ⇒ x1[r1]' x2[r2].

If the E-graph construction does not raise a conflict, thenM is compatible
with the equalities in Es. Since C conflicts withM, the conflict explanation must
involves Ds. To obtain an explanation, we decompose each disjunct C ∈ Ds into
(CEs

∨ CM ∨ Cinterface ∨ Cfree) as follows.
– CEs

contains disequalities t1 6' t2 such that t1 and t2 have the same E-graph
representatives; such disequalities are false because of the equalities in Es.

– CM contains disequalities t1 6' t2 such that t1 and t2 have distinct represen-
tatives t′1 and t′2 with [[t′1]]M = [[t′2]]M; these are false because ofM.

– Cinterface contains disequalities t1 6' t2 such that t1 and t2 have distinct rep-
resentatives t′1 and t′2, t′1 is evaluable and t′2 is a slice; we can still satisfy
t1 6' t2 by picking a good value for y; we say t′1 is an interface term.

– Cfree contains disequalities t1 6' t2 such that t1 and t2 have distinct slices as
representatives; we can still satisfy t1 6' t2 by picking a good value for y.

The disjuncts in Ds take part in the conflict either when (i) one of the clauses
in Ds is false because Cinterface and Cfree are both empty; or (ii) the finite do-
mains are too small to satisfy the disequalities in Cinterface and Cfree, given the
values assigned inM. In either case, we can produce a conflict explanation with
Algorithm 2.
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Algorithm 2 Disequality conflict
1: function dis_conflict(Ds,M,G)
2: S ← ∅ . where we collect interface terms
3: C0 ← ∅ . where we collect the disequalities that evaluate to false
4: for C ∈ Ds do
5: Crep

M ←
∨
{rep(t1,G) 6' rep(t2,G) | (t1 6' t2) ∈ CM}

6: if is_empty(Cinterface) and is_empty(Cfree) then
7: raise_conflict(E ∧D ⇒ Crep

M)
8: else
9: C0 ← C0 ∨ Crep

M . we collect the disequalities made false in the model
10: for t1 6' t2 ∈ Cinterface with y 6∈ fv(rep(t1,G)) do
11: S ← S ∪ {rep(t1,G)} . we collect the interface term
12: C 6= ←

∨
{t1' t2 | [[t1]]M 6= [[t2]]M, t1, t2 ∈ S}

13: C= ←
∨
{t1 6' t2 | [[t1]]M = [[t2]]M, t1 6= t2, t1, t2 ∈ S}

14: return E ∧D ⇒ C0 ∨ C 6= ∨ C=

In a type (i) conflict, the algorithm produces an interpolant Crep
M that is

derived from a single element of Ds. Because we assume that C is a core, a
type (i) conflict can happen only if Ds is a singleton. Here is how the algorithm
behaves on such a conflict:

Example 4. Let r1 and r2 be bit ranges of the same length, let r3, r4, r5 be bit
ranges of the same length. Assume Es contains

{ x1[r1]' y[r1] , x2[r2]' y[r2] , y[r3]' y[r5] , y[r4]' y[r5] },
an assume Ds is the singleton { (y[r1] 6' y[r2] ∨ y[r3] 6' y[r4]) }. LetM map x1
and x2 to 0 . . . 0 and assume y[r5] is the E-graph representative for component

{ y[r3], y[r4], y[r5] }.
The unique clause of Ds contains two disequalities:
– The first one, y[r1] 6' y[r2], belongs to CM because the representatives of
y[r1] and y[r2], namely x1[r1] and x2[r2], both evaluate to 0 . . . 0.

– The second one, y[r3] 6' y[r4] ,belongs to CEs because the representatives of
y[r3] and y[r4] are both y[r5],

As Cinterface and Cfree are empty, Algorithm 2 outputs E ∧D ⇒ x1[r1] 6' x2[r2].

For a conflict of type (ii), the equalities and disequalities that hold in M
between the interface terms make the slices of y require more values than there
exist. So the produced conflict clause includes (the negation of) all such equalities
and disequalities. An example can be given as follows:

Example 5. Assume E (and then Es) is empty and assume Ds is
{ x2[0] 6' x2[1] ∨ y[0] 6' y[1] , x1[0] 6' y[0] , x1[1] 6' y[1] }

LetM map x1 and x2 to 00. Then dis_conflict(Ds,M,G) behaves as follows:
– In the first clause, call it C, the first disequality is in CM, as the two sides

are in different components but evaluate to the same value; so C0 becomes
{ x2[0] 6' x2[1] }; the second disequality features two slices and is thus in
Cfree; The clause is potentially satisfiable and we move to the next clause.
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– The second clause contains a single disequality that cannot be evaluated
(since y[0] is not evaluable in M). Term x1[0] is added to S. The clause is
potentially satisfiable so we move to the next clause.

– The third clause of Ds is similar. It contains a single disequality that cannot
be evaluated. The interface term x1[1] is added to S.

Since all clauses of Ds have been processed, the conflict is of type (ii). Indeed,
y[0] must be different from 0 because of the second clause, y[1] must also be
different from 0 because of the third clause, but y[0] and y[1] must be different
from each other because of the first clause. Since both y[0] and y[1] have only one
bit, there are only two possible values for these two slices, so the three constrains
are in conflict. Algorithm 2 produces the conflict clause

D ⇒ ( x2[0] 6' x2[1] ∨ x1[0] 6' x1[1] ).
The disequality x2[0] 6' x2[1] is necessary because, if it were true inM, we would
not have to satisfy y[0] 6' y[1] and therefore y ← 11 would work. Disequality
x1[0] 6' x1[1] is also necessary because, if it were true in M, say with x1 ← 01
(resp. x1 ← 10), then y ← 11 (resp. y ← 00) would work.

Correctness of the method relies on the following lemma.

Lemma 1 (The produced clauses are interpolants).
1. If Algorithm 1 reaches line 7, t′1' t′2 is an interpolant for E ∧D atM.
2. If Algorithm 2 reaches line 7, Crep

M is an interpolant for E ∧D atM.
3. If it reaches line 14, C0 ∨ C6= ∨ C= is an interpolant for E ∧D atM.

Proof. See Appendix B.

4 A Linear Arithmetic Fragment

Our second specialized explanation mechanism applies when constraints C =
{C1, . . . , Cm} belong to the following grammar:

Constraints C ::= a ¬a
Atoms a ::= e1 + t ≤u e2 + t e1 ≤u e2 + t e1 + t ≤u e2
Terms t ::= y[h:] t[:l] t+ e1 − t 0k ◦ t t ◦ 0k

where e1 and e2 range over evaluable bitvector terms (i.e., y 6∈ fv(e1)∪fv(e2)), and
0k is 0 on k bits. We can represent variable y as the term y[|y|:]. This fragment
of bitvector arithmetic is linear in y and there can be only one occurrence of y
in terms. Constraints in Section 3 are then outside this fragment in general.

Let A be ∃y(C1 ∧ · · · ∧ Cm), and M be the partial model involved in the
conflict. The explanation for A at modelM is (roughly) produced as follows:
1. For each constraint Ci, 1 ≤ i ≤ m, featuring a (unique) lower-bits extract
y[wi:], we compute a condition literal ci satisfied by M and a forbidden
interval Ii of the form [li ;ui[, where li and ui are evaluable terms, such that
ci ⇒ (Ci ⇔ (y[wi:] /∈ Ii)) is valid.

2. We group the resulting intervals (Ii)1≤i≤m according to their bitwidth: if Sw
is the set of intervals forbidding values for y[w:], 1 ≤ w ≤ |y|, then under
condition

∧m
i=1 ci formula A is equivalent to ∃y(

∧|y|
w=1 ( y[w:] /∈

⋃
I∈Sw

I )).
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Atom a Forbidden interval that a (resp. ¬a) specifies for t
Ia I¬a Condition ca/c¬a

e1 + t ≤u e2 + t
[− e2 ; − e1[ [− e1 ; − e2[ e1 6' e2 1

[0 ; 0[ full e1' e2 2

e1 ≤u e2 + t
[− e2 ; e1 − e2[ [e1 − e2 ; − e2[ e1 6' 0 3

[0 ; 0[ full e1' 0 4

e1 + t ≤u e2
[e2 − e1 + 1 ; − e1[ [− e1 ; e2 − e1 + 1[ e2 6' − 1 5

[0 ; 0[ full e2' − 1 6
Table 1: Creating the forbidden intervals

3. We produce a series of constraints d1,. . . , dp that are satisfied by M and
that are inconsistent with

∧|y|
w=1 ( y[w:] /∈

⋃
I∈Sw

I ). The interpolant will be
(
∧m
i=1 ci ∧

∧p
i=1 di)⇒ ⊥: it is implied by A, and evaluates to false inM.

4.1 Forbidden Intervals

An interval takes the form [l ;u[, where the lower bound l and upper bound u are
evaluable terms of some bitwidth w, with l included and u excluded. The notion
of interval used here is considered modulo 2w. We do not require l ≤u u so an
interval may “wrap around” in Z/2wZ. For instance, the interval [1111 ; 0001[
contains two bitvector values, namely, 1111 and 0000. If l and u evaluate to the
same value, then we consider [l ;u[ to be empty (as opposed to the full domain,
which we denote by fullw or just full). Notation t ∈ I stands for atom > if I is
full and atom t−l <u u−l if I is [l ;u[.

Given a constraint C with unevaluable term t, we produce an interval IC
of forbidden values for t according to the rules of Table 1. A side condition cC
identifies when the lower and upper bounds would coincide, in which case the
interval produced is either empty or full. For every row of the table, the formula
cC ⇒ (C ⇔ t /∈ Ic) is valid in BV. Given a partial model M, we convert C to
such an interval by selecting the row where [[cC ]]M = true.

Example 6.
6.1 Assume C1 is literal ¬(x1 ≤u y) and M = {x1 7→ 0000}. Then line 4 of

Table 1 applies, and IC1 is interval full with condition x1' 0.
6.2 Assume C1 is ¬(y' x1), C2 is (x1 ≤u x3 +y), C3 is ¬(y−x2 ≤u x3 +y), and
M = {x1 7→ 1100, x2 7→ 1101, x3 7→ 0000}. Then by line 5, IC1 = [x1 ;x1 +1[
with trivial condition (0 6' −1), by line 3, IC2 = [−x3 ;x1−x3[ with condition
(x1 6' 0), and by line 1, IC3 = [x2 ; − x3[ with condition (−x2 6' x3).

By our assumptions, the term t contains a unique subterm of the form y[w:].
We transform IC into an interval of forbidden values for y[w:] by applying proce-
dure forbid( t , IC , cC ) shown in Figure 1. The procedure proceeds by recursion
on t. Assuming cC is true inM, then forbid( t , IC , cC ) returns a triple (w, I ′, c′)
such that [[c′]]M is true, and c′ ⇒ cC and c′ ⇒ (t /∈ IC ⇔ y[w:] /∈ I ′) are valid.
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forbid( t , [0 ; 0[ , c ) := (1, [0 ; 0[, c) forbid( 0k ◦ t , I , c ) := utrimk( t , I , c )
forbid( t , full , c ) := (1, full, c) forbid( t ◦ 0k , I , c ) := dtrimk( t , I , c )
forbid( y[w:] , I , c ) := (w, I, c) when I is not [0 ; 0[ nor full
forbid( t[:w] , [l ; u[ , c ) := forbid( t , [l ◦ 0w ; u ◦ 0w[ , c )
forbid( t + c , [l ; u[ , c ) := forbid( t , [l−c ; u−c[ , c )
forbid(−t , [l ; u[ , c ) := forbid( t , [1−u ; 1−l[ , c )

utrimk( t , [l ; u[ , c ) :=

{ forbid( t , [l′ ; u′[ , c∧cl∧cu ) if [l′ ; u′[ is not [0 ; 0[
(1, full, c∧cl∧cu∧c′) if [l′ ; u′[ is [0 ; 0[ and [[c′]]M is true
(1, [0 ; 0[, c∧cl∧cu∧¬c′) if [l′ ; u′[ is [0 ; 0[ and [[c′]]M is false

where l′ is l[w:] (resp. 0w) and cl is al (resp. ¬al) if [[al]]M is true (resp. false),
u′ is u[w:] (resp. 0w) and cu is au (resp. ¬au) if [[au]]M is true (resp. false),
al is l[:w]' 0k, au is u[:w]' 0k, c′ is (0k+w ∈ [l ; u[), and w is |t|.

dtrimk( t , [l ; u[ , c ) :=

{ forbid( t , [l′ ; u′[ , p∧cl∧cu ) if [l′ ; u′[ is not [0 ; 0[
(1, full, c∧cl∧cu∧c′) if [l′ ; u′[ is [0 ; 0[ and [[c′]]M is true
(1, [0 ; 0[, c∧cl∧cu∧¬c′) if [l′ ; u′[ is [0 ; 0[ and [[c′]]M is false

where l′ is l[:k] (resp. l[:k]+1) and cl is al (resp. ¬al) if [[al]]M is true (resp. false),
u′ is u[:k] (resp. u[:k]+1) and cu is au (resp. ¬au) if [[au]]M is true (resp. false),
al is l[k:]' 0k, au is u[k:]' 0k, c′ is (u′ ◦ 0k ∈ [l ; u[), and w is |t|.

Fig. 1: Transforming the forbidden intervals

Executing forbid( tCi , ICi , cCi ) for all constraints Ci produces a family of triples
(wi, I ′i, c′i)1≤i≤m such that, for each i, formula c′i ⇒ (Ci ⇔ (y[wi:] /∈ I ′i)) is valid
and [[c′i]]M is true.

4.2 Interpolant

First, assume that one of the triples obtained above is of the form (w, full, c),
coming from constraint C. As the interval forbids the full domain of values for
y[w:], we produce conflict clause C ∧ c⇒ ⊥. This formula is an interpolant of A
atM. This is illustrated in Example 7.1.

Example 7.
7.1 In Example 6.1 where C1 is literal ¬(x1 ≤u y) and M = {x1 7→ 0000}, the

interpolant for ∃y ¬(x1 ≤u y) atM is (x1' 0)⇒ ⊥.
7.2 Example 6.2 does not contain a full interval. Model M satisfies the three

conditions c1 := (0 6' − 1), c2 := (x1 6' 0) and c3 := (−x2 6' x3), and the
intervals I1 = [x1 ;x1 +1[, I2 = [−x3 ;x1−x3[, and I3 = [x2 ; −x3[, evaluate
to [[I1]]M = [1100 ; 1101[, [[I2]]M = [0000 ; 1100[, and [[I3]]M = [1101 ; 0000[,
respectively. Note how

⋃3
i=1[[Ii]]M is the full domain.

Assume now that none of the intervals are full (as in Example 7.2). We group
the triples (w, I, c) into different layers characterized by their bitwidths w: I will
henceforth be called a w-interval, restricting the feasible values for y[w:], and cI
denotes its associated condition in the triple. Ordering the groups of intervals by
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bitwidth w1 > w2 > · · · > wj

Interval layer w1-intervals w2-intervals . . . wj-intervals
S1 = {I1.1, I1.2, . . .} S2 = {I2.1, I2.2, . . .} . . . Sj = {Ij.1, Ij.2, . . .}

Forbidding
values for y[w1:] y[w2:] . . . y[wj :]

Fig. 2: Intervals collected from C1 ∧ · · · ∧ Cm

decreasing bitwidths w1 > w2 > · · · > wj , as shown in Figure 2, Sj denotes the
set of produced wj-intervals. The properties satisfied by the triples entail that

A ∧ (
∧j
i=1

∧
I∈Si

cI)⇒ B
is valid, where B is ∃y

∧j
i=1(y[wi:] /∈

⋃
I∈Si

I). And formula (
∧j
i=1

∧
I∈Si

cI)⇒ B
is false inM. To produce an interpolant, we replace B by a quantifier-free clause.

The simplest case is when there is only one bitwidth w = w1: the fact that
B is falsified byM means that

⋃
I∈S1

[[I]]M is the full domain Z/2wZ. Property
“
⋃
I∈S1

I is the full domain” is then expressed symbolically as a conjunction
of constraints in the bitvector language. To compute them, we first extract a
sequence I1, . . . , Iq of intervals from the set S1, originating from a subset C of
the original constraints (Ci)mi=1, and such that the sequence [[I1]]M, . . . , [[Iq]]M
of concrete intervals leaves no “hole” between an interval of the sequence and
the next, and goes round the full circle of domain Z/2wZ: the sequence forms
a circular chain of linking intervals. This chain can be produced by a standard
coverage extraction algorithm, as shown in Appendix C, Fig. 4. Formula B :=
∃y(y[w:] /∈

⋃
I∈S1

I) is then replaced by (
∧q
i=1 ui ∈ Ii+1) ⇒ ⊥, where ui is the

upper bound of Ii and Iq+1 is I1. Each interval has its upper bound in the next
interval (ui ∈ Ii+1), i.e., intervals do link up with each other. The conflict clause
is then

(C ∧ (
∧q
i=1 cIi

) ∧ (
∧q
i=1 ui ∈ Ii+1))⇒ ⊥

Example 8. For Example 7.2, the coverage-extraction algorithm produces the
sequence I1, I3, I2, i.e., [x1 ;x1+1[, [x2 ; − x3[, [− x3 ;x1−x3[. The linking con-
straints are then d3 := (x1+1) ∈ I3, d2 := (−x3) ∈ I2, and d1 := (x1−x3) ∈ I1,
and the interpolant is d3 ∧ d2 ∧ d1 ⇒ ⊥.3

When several bitwidths are involved, the intervals must “complement each
other” at different bitwidths so that no value for y is feasible. For a bitwidth
wi, the union of the wi-intervals in modelM may not necessarily cover the full
domain (i.e.,

⋃
I∈Si

[[I]]M may be different from Z/2wiZ). The coverage can leave
“holes”, and values in that hole are ruled out by constraints of other bitwidths.
To produce the interpolant, we adapt the coverage-extraction algorithm into
Algorithm 3, which takes as input the sequence of sets (S1, . . . ,Sj) as described
in Figure 2, and produces the interpolant’s constraints d1, . . . , dp, collected in
set output. The algorithm proceeds in decreasing bitwidth order, starting with
3 We omit c1, c2, c3 here, since they are subsumed by d1, d2, d3, respectively.
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Algorithm 3 Producing the interpolant with multiple bitwidths
1: function cover((S1, . . . ,Sj),M)
2: output← ∅ . output initialized with the empty set of constraints
3: longest← longest(S1,M) . longest interval identified
4: baseline← longest.upper . where to extend the coverage from
5: while [[baseline]]M 6∈ [[longest]]M do
6: if ∃I ∈ S1, [[baseline]]M ∈ [[I]]M then
7: I ← furthest_extend(baseline,S1,M)
8: output← output ∪ {cI , baseline ∈ I} . adding I’s condition and linking constraint
9: baseline← I.upper . updating the baseline for the next interval pick
10: else . there is a hole in the coverage of Z/2w1Z by intervals in S1
11: next← next_covered_point(baseline,S1,M) . the hole is [baseline ; next[
12: if [[next]]M − [[baseline]]M <u 2w2 then
13: I ← [next[w2:] ; baseline[w2:][ . it is projected on w2 bits and complemented
14: output← output ∪ {next−baseline <u 2w2} ∪ cover(((S2 ∪ I),S3, . . . ,Sj),M)
15: baseline← next . updating the baseline for the next interval pick
16: else . intervals of bitwidths ≤ w2 must forbid all values for y[w2:]
17: return cover((S2, . . . ,Sj),M) . S1 was not needed
18: return output ∪ {baseline ∈ longest} . adding final linking constraint

w1, and calling itself recursively on smaller bitwidths to cover the holes that the
current layer leaves uncovered (termination of that recursion is thus trivial). For
every hole that

⋃
I∈S1

[[I]]M leaves uncovered, it must determine how intervals of
smaller bitwidths can cover it.

Algorithm 3 relies on the following ingredients:
– longest(S,M) returns an interval among S whose concrete version [[I]]M

has maximal length;
– I.upper denotes the upper bound of an interval I;
– furthest_extend(a,S,M) returns an interval I ∈ S that furthest extends
a according toM (technically, an interval I that≤u-maximizes [[I.upper− a]]M
among those intervals I such that [[a]]M ∈ [[I]]M).

– If no interval in S covers a inM, next_covered_point(a,S,M) outputs
the lower bound l of an interval in S that ≤u-minimizes [[l − a]]M.

Algorithm 3 proceeds by successively moving a concrete bitvector value baseline
around the circle Z/2w1Z. The baseline is moved when a symbolic reason why it
is a forbidden value is found, in a while loop that ends when the baseline has gone
round the full circle. If there is at least one interval in S1 that covers baseline in
M (l. 6), the call to furthest_extend(baseline,S1,M) succeeds, and output
is extended with condition cI and (baseline ∈ I) (l. 8). If not, a hole has been
discovered, whose extent is given by next_covered_point(baseline,S1,M)
(l. 11). If the hole is bigger than 2w2 (i.e., 2w2 ≤u [[next−baseline]]M), then the
intervals of layers w2 and smaller must rule out every possible value for y[w2:],
and the w1-intervals were not needed (l. 17). If on the contrary the hole is smaller
(i.e., [[next−baseline]]M <u 2w2), then the w1-interval [baseline ; next[ is projected
as a w2-interval I := [baseline[w2:] ; next[w2:][ that needs to be covered by the
intervals of bitwidth w2 and smaller. This is performed by a recursive call on
bitwidth w2 (l. 14); the fact that only hole I needs to be covered by the recursive
call, rather than the full domain Z/2w2Z, is implemented by adding to S2 in the
recursive call the complement [next[w2:] ; baseline[w2:][ of I. The result of the
recursive call is added to the output variable, as well as the fact that the hole
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u1 <s u2  ¬(u2 ≤s u1) u1 ≤s u2  u1 + 2|u1|−1 ≤u u2 + 2|u2|−1

u1 <u u2  ¬(u2 ≤u u1) u1' u2  u1 − u2 ≤u 0
u[h:l]  u[h:][:l] u[:l][h:]  u[h+l:][:l]
(u1◦u2)[:l]  u1[:l−|u2|] if |u2| ≤ l (u1◦u2)[h:]  u2[h:] if h ≤ |u2|
(u1◦u2)[:l]  u1 ◦ u2[:l] if not (u1◦u2)[h:]  u1[h−|u2|:] ◦ u2 if not
2n×u  u[|u|−n:] ◦ 0n (n < |u|) (u1+u2)[h:]  u1[h:] + u2[h:]
±-extendk(u)  (0k◦(u+2|u|−1))−(0k◦2|u|−1) (u1×u2)[h:]  u1[h:]×u2[h:]
u1◦u2  (u1◦0|u2|) + (0|u1|◦u2) (−u)[h:]  −u[h:]

Fig. 3: Rewriting rules

must be small. The final interpolant is (
∧
d∈output d)⇒ ⊥. An example of run on

a variant of Example 6.2 is given in Appendix D.

5 Normalization

As implemented in Yices 2, MCSAT processes a conflict by first computing the
conflict core with BDDs, and then normalizing the constraints using the rules
of Figure 3. In the figure, u, u1 and u2 stand for any bitvector expressions and
±-extendk(u) is the sign-extension of u with k bits. The bottom left rule is ap-
plied with lower priority than the others (as upper-bits extraction distributes on
◦ but not on +) and only if exactly one of {u1, u2} is evaluable (and not 0). In
the implementation, u[|u|:0] is identified with u, ◦ is associative, and +,× are
subject to ring normalization. This is helped by the internal (flattened) repre-
sentation of concatenations and bitvector polynomials in Yices 2. Normalization
allows the specialized interpolation procedure to apply at least to the following
grammar:4

Atoms a ::= e1 + tl e2 + t e1 l e2 + t e1 + tl e2 e1 l e2
Terms t ::= t[h:l] t+ e1 − t e1 ◦ t t ◦ e1 ±-extendk(t)

where l ∈ {≤u, <u,≤s, <s, ' }. Rewriting can often help further, by eliminating
occurrences of the conflict variable (thus making more subterms evaluable) and
increasing the chances that two unevaluable terms t1 and t2 become syntactically
equal in an atom e1+t1 l e2+t2.5 Finally, we cache evaluable terms to avoid
recomputing conditions of the form y /∈ fv(e). These conditions are needed to
determine whether the specialized procedures apply to a given conflict core.

6 Experiments

To evaluate the effectiveness of the procedure, and the impact of the different
modules, we ran the MCSAT solver with different settings on the 41547 QF_BV
benchmarks available in the SMT-LIB library [1]. We ran the solver in the follow-
ing settings: all: the procedures of Sections 3 and 4, with the bitblasting baseline
4 e1 l e2 is accepted since it either constitutes the interpolant or it can be ignored.
5 For this reason we normalize evaluable terms.
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Fig. 4: Evaluation of the MCSAT solver and the effect of different explainer combina-
tions and propagation. Each curve represents the cumulative number of benchmarks
that the solver variant can solve against the cumulative time.

when these do not apply; bb: only the bitblasting baseline; bb+eq: procedure of
Section 3 plus the baseline; bb+arith: procedure Section 4 plus the baseline; all-
prop is the same as all but with no propagation of bitvector assignments during
search. For reference, we also included the version of the Yices 2 MCSAT solver
that entered the 2019 SMT competition6, marked as smtcomp2019.

We used a three-minute timeout per instance. The results are show in Figure
4. Each curve shows the number of solved benchmarks for each solver variant.
The solver combining all explainer modules solves 33241 benchmarks, and the
results show that both equality and arithmetic explainers contribute to the ef-
fectiveness of the overall solver, individually and combined. The results also
show that the eager MCSAT value propagation mechanism introduced in [15] is
important for effective solving in practice.

For reference, the CDCL(T ) version of Yices 2 based on bit-blasting can
solve 40962 benchmarks with the same timeout. Using an alternative MCSAT
approach to bitvector solving, Zeljić et al. reported that their solver could solve
23704 benchmarks from a larger set of 49971 instances with a larger timeout of
1200s [22].7 We have not yet managed to build and run Zeljić’s solver on our
Linux server for direct comparison.

6 https://smt-comp.github.io/2019/
7 The additional 8424 benchmarks have since been deleted from the SMT-LIB library
as duplicates.
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7 Discussion and Future Work

The paper presents ongoing work on building an MCSAT solver for the theory
of bitvectors. We have presented two main ideas for the treatment of BV in
MCSAT, complementing the approach proposed in [22].

First, by relying on BDDs for representing feasible sets, our design leaves
the main search mechanism of MCSAT generic and leaves specific fragment-
specific mechanisms to conflict explanation. The explanation mechanism is se-
lected based on the constraints involved in the conflict. BDDs are also used to
minimize the conflicts, which increases the chances that a dedicated explanation
mechanism can be applied. BDDs offer a propagation mechanism that differs
from those in [22], in that the justification for a propagated assignment is com-
puted lazily, only when it is needed in conflict analysis. Computing the conflict
core at that point effectively recovers justification of the propagations.

Second, we propose explanation mechanism for two fragments of the theory:
the core fragment of BV that includes equality, concatenation and extraction;
and a fragment of linear arithmetic. Compared to previous work on coarsest-
base slicing, such as [3], our work applies the slicing on the conflict constraints
only, rather than the whole problem. This should in general make the slices
coarser, which we expect to positively impact efficiency. Our work on explaining
arithmetic constraints is novel, except for the mechanisms studied in [14] that
studied a smaller fragment of arithmetic outside of the context of MCSAT.

We have implemented the overall approach in the Yices 2 SMT solver. Ex-
periments show the overall approach is effective on practical benchmarks, with
all the proposed modules adding the the solver performance. MCSAT is not yet
competitive with bitblasting, but we are making progress. The main challenge
is devising efficient word-level explanation mechanisms that can handle all or a
least a large fragment of BV. Finding high-level interpolants in BV is still an
open problem and our work on MCSAT shows progress for some fragment of the
bitvector theory. For MCSAT to truly compete with bitblasting, we will need
interpolation methods that cover much larger classes of constraints,

Future work includes relating our approach to the very recent report by Chi-
hani, Bobot, and Bardin [5], which aims at lifting the CDCL mechanisms to the
word level of bitvector reasoning, and therefore seems very close to MCSAT. We
also plan to explore integrating our MCSAT treatment of bitvectors with other
components of SMT-solvers, whether in the context of MCSAT or in different
architectures. An approach for this is the recent framework of Conflict-Driven
Satisfiability (CDSAT) [2], which precisely aims at organizing collaboration be-
tween generic theory modules.
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A Differences with previous workshop presentations

The present contribution improves on our previous SMT workshop contribu-
tions [11,12] as follows:
1. Both the concatenation-extraction explainer (whose design was described

in [11]) and the arithmetic explainer (described in [12]), have seen their scope
of application significantly extended by the notion of evaluable term. This
can be seen by comparing the fragments’ grammars with those of [11, 12].
Evaluable terms can feature any operator of the BV theory, as long as the
conflict variable does not appear. The implementation (inexistant at the time
of [11]) has significant machinery to detect and handle evaluable terms.

2. The arithmetic explainer has been enriched with concatenations and upper-
bits extractions, which were not even broached in [12]. Regarding extraction,
it only addressed lower-bits extraction, and even that was not implemented.
Arbitrary extractions, and concatenations, are entirely new, and triggered
the design of the algorithm described in Fig. 1.

3. The aggressive normalization applied to conflict cores before they are ana-
lyzed, presented in Section 5, is also mostly new: only a very limited form
was present in [12].

4. Finally, no experimental results were described in [11,12]. In fact, no imple-
mentation had been developed regarding the design proposed in [11].
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B Correctness of the concatenation-extraction explainer

Lemma 2 (The produced clauses are interpolants).
1. If Algorithm 1 reaches line 7, t′1' t′2 is an interpolant for E ∧D atM.
2. If Algorithm 2 reaches line 7, Crep

M is an interpolant for E ∧D atM.
3. If it reaches line 14, C0 ∨ C6= ∨ C= is an interpolant for E ∧D atM.

Proof. The first two parts are straightforward. We prove point 3.
– Free variables.

By construction, C0 has free variables in x (l. 5, 9). So does S (l.11), and
therefore C 6= and C=.

– Validity.
We show that (E∧D)⇒ (C0∨C6=∨C=) is valid. LetM′ be a model for x, y
satisfying E ∧D but not C0 ∨C 6= ∨C=. SinceM′ satisfies E ∧D, it satisfies
Es and Ds, so for each component of the E-graph G,M′ evaluates each term
of the component to the same value. And moreover it satisfies each clause
C in Ds. Take such a clause C:M′ still evaluates CEs to false becauseM′
evaluates each term of a G-component to the same value. As M′ does not
satisfy C0 ∨ C 6= ∨ C= it surely does not satisfy C0. By construction (l. 5, 9)
the disequalities in C0 are between representatives of disequalities in CM, so
M′ surely does not satisfy CM either. So M′ must satisfy C by satisfying
a disequality dC in Cinterface or Cfree. MoreoverM′ does not satisfy C 6= ∨C=
and therefore for two interface terms t1 and t2, [[t1]]M′ = [[t2]]M′ if and only
if [[t1]]M = [[t2]]M, by construction of C6= (l. 12) and C= (l. 13). Let t1, . . . , tm
be the interface terms, with values v1, . . . , vm in M and values v′1, . . . , v′m
in M′. Let π be a sort-preserving permutation on all bitvector values that
maps v′i to vi for 1 ≤ i ≤ m. Let us extend M by assigning to y a value v
such that for each slice y[r], we have [[y[r]]]M,y 7→v = π([[y[r]]]M′). We know
that M, y 7→ v satisfies Es, and therefore E. We now show that M, y 7→ v
satisfies Ds, and therefore D, by showing that for each clause C in Ds it
satisfies dC . Let y[r] and t be the representatives of the two sides of dC .
Whether t is a slice of y (dC ∈ Cfree) or is an interface term (dC ∈ Cinterface)
we have in both cases π([[t]]M′) = [[t]]M,y 7→v. Since M′ satisfies Es and dC ,
we have [[y[r]]]M′ 6= [[t]]M′ , and therefore [[y[r]]]M,y 7→v 6= [[t]]M,y 7→v. Since
M, y 7→ v satisfies Es, it satisfies dC .

– Falsification byM.
By construction, M falsifies C6= (l. 12) and C= (l. 13). Moreover each dis-
equality in C0 is between the representatives of a disequality CM for some
clause C ∈ Ds (l. 5, 9). SinceM falsifies CM by definition, and satisfies Es
(otherwise Algorithm 1 would have raised a conflict), M also falsifies the
disequality between the representatives. SoM falsifies C0.
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Algorithm 4 Extracting a covering sequence of intervals
1: function seq_extract({I1, . . . , Im},M)
2: output← () . output initialized with the empty sequence of intervals
3: longest← longest({I1, . . . , Im},M) . longest interval identified
4: baseline← longest.upper . where to extend the coverage from
5: while [[baseline]]M 6∈ [[longest]]M do
6: I ← furthest_extend(baseline, {I1, . . . , Im},M)
7: output← output, I . adding I to the output sequence
8: baseline← I.upper . updating the baseline for the next interval pick
9: if [[baseline]]M ∈ [[output.first]]M then
10: return output . the circle is closed without the help of longest
11: return output, longest . longest is used to close the circle

C Complements on interpolation for bitvector arithmetic

Table 1 is inspired by Table 1 in Janota andWintersteiger’s SMT’2016 paper [14].
We leverage the approach for the purpose of building interpolants, so in our case
the expressions e1, e2, etc are not constants, but can have variables (with values
in model M). A rather cosmetic difference we make consists in working with
intervals that exclude their upper bound, as this makes the theoretic and imple-
mented treatment of those intervals simpler and more robust to the degenerate
case of bitwidth 1, where 1 = −1. Another difference is that we take circular in-
tervals, so that every constraint corresponds to exactly one interval; as a result,
we do not need the case analyses expressed by the conditions of Table 1 in [14].
We do, however, make some new case analyses to detect when a constraint leads
to an empty or full forbidden interval, since such intervals will be subject to a
specific treatment when generating interpolants, as described in Section 4.2.

When the intervals I1 . . . , Im generated from C1, . . . , Cm are all forbidding
values for the same lower-bits extract y[w:] of the conflict variable y, we know
that

⋃m
i=1[[Ii]]M is the full domain Z/2wZ. We can then use Algorithm 4 to

extract a sequence Iπ(1), . . . , Iπ(q) from {I1 . . . , Im} (i.e., an injective function π
from [1; q] to [1;m]) that covers Z/2wZ in the following sense:

⋃q
i=1[[Iπ(i)]]M is

still Z/2wZ as in modelM the upper bound of each interval belongs to the next
interval in the sequence. Algorithm 4 relies on the following ingredients:
– longest({I1, . . . , Im},M) returns an interval among {I1, . . . , Im} whose

concrete version [[I]]M has maximal length;
– I.upper denotes the upper bound of an interval I (it is excluded from I);
– furthest_extend(a, {I1, . . . , Im},M) returns an interval I among
{I1, . . . , Im} that furthest extends a according to M (technically, an inter-
val I that ≤u-maximizes [[I.upper− a]]M among those intervals I such that
[[a]]M ∈ [[I]]M).

– output.first denotes the first element of a sequence output;
Algorithm 4 stops with the first interval I that closes the circle, in that its
concrete upper bound [[I.upper]]M belongs to [[longest]]M (it may or may not
close the circle without the help of [[longest]]M, hence the final if...then...else).
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Note that
⋃m
i=1[[Ii]]M is not the full domain if and only if one of the calls

furthest_extend(a, {I1, . . . , Im},M) fails.

Example 9. In Example 7.2, the coverage algorithm 4 produces the sequence
I1, I3, I2, namely [x1 ;x1 + 1[, [x2 ; − x3[, [ − x3 ;x1 − x3[, since the longest
concrete interval is [[I2]]M.

Remark 1. The reason why we identify an interval of maximal length is to obtain
a minimal coverage of the full domain: otherwise the last interval added to the
sequence could include some of the first ones; removing those from the sequence
would still produce a covering sequence.8 This does not happen when starting
the sequence by extending the longest interval, but of course there could still be
covering sequences with a smaller number of intervals.

Remark 2. The produced interpolant involves generating constraints ui ∈ Ii+1.
If Ii+1 = [li+1 ;ui+1[, a naive way of expressing ui ∈ Ii+1 would be (li+1 ≤u ui <

u

ui+1). That would fail to capture the possibility that the intervals overflow.9

D Example on multiple bitwidths

Example 10. Consider a variant of Example 6.2 with the constraints C1, C2, C3, C4
presented on the first line of Figure 5, and model M = {x1 7→ 1100, x2 7→
1101, x3 7→ 0000}. The second line is obtained from Table 1, with the conditions
on the third line being satisfied inM.

Algorithm 3 identifies IC2 as the longest among S1 in model M. The next
interval among S1 covering (x1−x3) inM is IC1 , so (x1−x3) ∈ IC1 is added as
an interpolant constraint d1. Then x1+1 is not covered in M by any interval
in S1: it starts a hole that spans up to −x3. The hole [x1+1 ; − x3[ has length
0011 <u 22 in M, so (−x3−x1−1 <u 22) is added as an interpolant constraint
d2 and a recursive call is made on S ′2 = {IC3 , I} and S3 = {IC4}, where I =
[ − x3[2:] ;x1[2:]+1[. The longest interval among S ′2 in M is IC3 , and it upper
8 The issue does not occur in MCSAT as currently implemented, where we have an
extra piece of information, namely that the original constraints C1, . . . , Cm form a
core of the conflict: if one of them, say C1, is removed, then ∃y(C2∧· · ·∧Cm) evaluates
to true inM. If one of the intervals, say I1, was not needed for the coverage, then
C1 would not be in the core. Hence in our implementation, q is always m and the
sequence is just an ordering of the set of intervals. Moreover if one of the intervals is
full, then it must be the only interval. Still, the algorithm above allows us to produce
the ordering.

9 A particular case could be made for the interval(s) that overflow(s), expressing the
linking property differently, but that would actually give a particular role to the
constant 0 in the circular domain Z/2wZ. This would weaken the interpolant, in the
sense that it would rule out fewer models that falsifies A “for the same reason”M
does. Indeed, imagine another modelM′ falsifying A and leading to concrete inter-
vals [[I1]]M′ , . . . , [[Im]]M′ that only differ from [[I1]]M, . . . , [[Im]]M in that all bounds
are shifted by a common constant. The interpolant that gives a special role to 0 may
not rule outM′, whereas the interpolant we produce does.
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Constraint C
C1 C2 C3 C4

¬(y' x1) (x1 ≤u x3 + y) (y[2:] ≤u x2[2:]) (y[1:]' 0)
Forbidden
interval IC

[x1 ; x1 + 1[ [− x3 ; x1 − x3[ [x2[2:] + 1 ; 0[ [1 ; 0[

Condition c (0 6' − 1) (x1 6' 0) (x2[2:] 6' − 1) (0 6' − 1)
Concrete

interval [[IC ]]M
[1100 ; 1101[ [0000 ; 1100[ [10 ; 00[ [1 ; 0[

bitwidth wi w1 = 4 w2 = 2 w3 = 1
Interval layer Si S1 = {IC1 , IC2} S2 = {IC3} S3 = {IC4}

Forbidding
values for y y[2:] y[1:]

Fig. 5: Example with multiple bitwidths

bound 00 is covered inM by I, so 00 ∈ I is added as an interpolant constraint
d3. Then x1[2:]+1 is not covered inM by any interval in S ′2: it starts a hole that
spans up to x2[2:] + 1. The hole [x1[2:]+1 ;x2[2:]+1[ has length 01 <u 21 inM,
so (x2[2:]−x1[2:] <u 21) is added as an interpolant constraint d4 and a recursive
call is made on S ′3 = {IC4 , I

′} where I ′ = [x2[1:]+1 ;x1[1:]+1[. Intervals IC4

and I ′ finally cover Z/2Z, with (x1[1:]+1) ∈ IC4 and 0 ∈ I ′ added as interpolant
constraints d5 and d6. Coming back from the recursive calls, (x2[2:]+1) ∈ IC3 and
then −x3 ∈ IC2 are added as interpolant constraints d7 and d8. The interpolant
is

∧8
i=1 di ⇒ ⊥.
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