
March 24, 2020

Yices Manual
Version 2.6.2

Bruno Dutertre

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 859-2000 • Facsimile: (650) 859-2844





Contents

1 Introduction 1
1.1 Download and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Binary Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Source Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Content of the Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Language Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Supported Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Getting Help and Reporting Bugs . . . . . . . . . . . . . . . . . . . . . . . 6

2 Building Yices 2 from Source 9
2.1 Basic Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 MCSAT Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Third-Party SAT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Thread-Safe API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Building for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Manual and Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Yices 2 Logic 15
3.1 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Terms and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Bitvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Yices 2 Architecture 23
4.1 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Context Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 MCSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Third-Party SAT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



5 Yices Tool 29
5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Exists/Forall Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Unsat Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.1 Labeled Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Check With Assumptions . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Tool Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Input Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.1 Lexical Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5.2 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5.3 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5.4 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Support for SMT-LIB 63
6.1 SMT-LIB 2.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Tool Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 SMT-LIB 2.6 Compliance . . . . . . . . . . . . . . . . . . . . . . 67

6.2 SMT-LIB 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.1 Tool Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.2 Command-Line Options . . . . . . . . . . . . . . . . . . . . . . . 69

7 Yices API 71
7.1 A Minimal Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2 Basic API Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Full API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A License Terms 81

iv



Chapter 1

Introduction

This manual is an introduction to the logic, language, and architecture of the Yices 2 SMT
solver. Yices is developed at SRI International’s Computer Science Laboratory. Since ver-
sion 2.5.3, Yices is released under the GNU General Public License version 3 (reproduced
in Appendix A). Previous versions were released under different terms, and were free-of-
charge for non-commercial use.

To discuss alternative license terms, please contact us at fm-license@csl.sri.com.

1.1 Download and Installation

The latest stable version of Yices 2 can be downloaded at https://yices.csl.sri.
com. We provide pre-compiled binaries for the platforms and operating systems listed in
Table 1.1. We also provide source code there. For MacOS and Linux, you can also install
Yices 2 using package managers (i.e., homebrew for the Mac and apt for Debian/Ubuntu).

For the latest developments, you can clone our Git repository https://github.com/
SRI-CSL/yices2.

OS/Hardware Notes
Linux 64 bits Kernel 2.6.24 or more recent
Mac OS X 64 bits Mac OS X El Capitan
Windows (64 bits)

Table 1.1: Binary Distributions

1

https://yices.csl.sri.com
https://yices.csl.sri.com
https://github.com/SRI-CSL/yices2
https://github.com/SRI-CSL/yices2


1.1.1 Binary Distributions

To download stable Yices 2 binaries, go to https://yices.csl.sri.com and select
the distribution that you want to install. Untar or unzip the file and follow the instructions in
the included README file. The binary distributions are self-contained and do not require
installation of third-party libraries.

To complete installation on Linux or Mac OS X, the binary distributions include a shell
script called install-yices. By default, this script installs Yices in /usr/local. If
this is fine for you, type

sudo ./install-yices

This will install the binaries in /usr/local/bin, the library in /usr/local/lib,
and the header files in /usr/local/include.

To install Yices in a different location, you can type

./install-yices <directory>

(use sudo if necessary).

Homebrew Package

If you use homebrew on Mac OS X, you can easily install Yices as follows:

brew install SRI-CSL/sri-csl/yices

(you may need sudo). This will install the Yices 2 executables, library, and include files.

Debian Package

For Ubuntu or Debian (or any other Linux distribution that uses apt), we provide APT
packages. To install them, you must first add our PPA to your list of repositories then install
package yices2:

sudo add-apt-repository ppa:sri-csl/formal-methods
sudo apt-get update
sudo apt-get install yices2

You can also install the library and development files as follows:

sudo apt-get install yices2-dev libyices2.5

1.1.2 Source Distribution

The source distribution must be used for operating systems not listed in Table 1.1 (or for
old versions of Linux or Mac OS X). It is also useful if you desire to compile Yices with

2

https://yices.csl.sri.com


debugging information, if you want to link Yices with your own version of the GMP library,
or if your want to build a thread-safe safe version. The source is available as a tarfile at
https://yices.csl.sri.com and on our git repository at https://github.
com/SRI-CSL/yices2.

Several optional features can be selected at compilation time:

• MCSAT solver (required for non-linear arithmetic)

• Support for third-party backend SAT solvers

• Support for a thread-safe API.

Instructions for building Yices with these different features are given in Chapter 2.

1.2 Content of the Distributions

The binary distributions and packages include the Yices executables, the Yices library and
header files, and examples and documentation. Four solvers are currently included:

• yices is the main SMT solver. It can read and process input given in Yices 2’s
specification language. This language is explained in Chapter 5.

• yices-smt is a solver for input in the SMT-LIB 1.2 notation [RT06].

• yices-smt2 is a solver for input in the SMT-LIB 2.0 notation [BFT15].

• yices-sat is a Boolean satisfiability solver that can read input in the DIMACS
CNF format.

The library and header files allow you to use Yices via its API, as explained in Chapter 7.

The source distribution includes source code for the above four solvers and for the library.
It also includes documentation for the source, more examples and regression tests, various
scripts and utilities, and the LATEX source for this manual.

1.3 Language Bindings

We currently provide wrappers to the Yices API for Python and (experimental) binding or
Go and OCaml. Source code for these different wrappers is maintained on different GitHub
repositories.

Python: https://github.com/SRI-CSL/yices2_python_bindings. The
easiest way to install these Python bindings is to use pip:

pip install yices

3

https://yices.csl.sri.com
https://github.com/SRI-CSL/yices2
https://github.com/SRI-CSL/yices2
https://github.com/SRI-CSL/yices2_python_bindings


Go: https://github.com/SRI-CSL/yices2_go_bindings. The code can
be installed with

go get github.com/ianamason/yices2_go_bindings/cmd/yices_info

OCaml: https://github.com/SRI-CSL/yices2_ocaml_bindings. Follow
the instructions in this repository for building and using the OCaml bindings.

1.4 Supported Logics

The current Yices 2 release supports quantifier-free combinations of linear and non-linear
integer and real arithmetic, uninterpreted function, arrays, and bitvectors. Currently, Yices 2
supports most SMT-LIB logics that do not involve quantifiers as summarized in Table 1.2.
The meaning of the logics and theories in this table is explained at the SMT-LIB website
(http://www.smtlib.org). In addition, Yices 2 supports a more general set of array
operations than required by SMT-LIB, and Yices 2 has support for tuple and enumeration
types, which are not part of SMT-LIB.

4

https://github.com/SRI-CSL/yices2_go_bindings
https://github.com/SRI-CSL/yices2_ocaml_bindings
http://www.smtlib.org


Logic Description Supported

ALIA Arrays, Linear Integer Arithmetic, Quantifiers no

AUFLIA Arrays, Linear Integer Arithmetic, Quantifiers, Uninterpreted Functions no

AUFLIRA Arrays, Mixed Linear Arithmetic, Quantifiers, Uninterpreted Functions no

AUFNIRA Arrays, Nonlinear Arithmetic, Quantifiers, Uninterpreted Functions no

LIA Linear Integer Arithmetic, Quantifiers no

LRA Linear Real Arithmetic, Quantifiers no

NIA Nonlinear Integer Arithmetic, Quantifiers no

NRA Nonlinear Real Arithmetic, Quantifiers no

QF ABV Arrays and Bitvectors yes

QF ALIA Arrays and Linear Integer Arithmetic yes

QF AUFBV Arrays, Bitvectors Uninterpreted Functions yes

QF AUFLIA Arrays, Linear Integer Arithmetic, Uninterpreted Functions yes

QF AX Arrays (with extensionality) yes

QF BV Bitvectors yes

QF IDL Integer Difference Logic yes

QF LIA Linear Integer Arithmetic yes

QF LIRA Mixed Linear Arithmetic yes

QF LRA Linear Real Arithmetic yes

QF NIA Nonlinear Integer Arithmetic yes

QF NIRA Mixed Nonlinear Arithmetic yes

QF NRA Nonlinear Real Arithmetic yes

QF RDL Real Difference Logic yes

QF UF Uninterpreted Functions yes

QF UFBV Uninterpreted Functions, Bitvectors yes

QF UFIDL Uninterpreted Functions, Integer Difference Logic yes

QF UFLIA Uninterpreted Functions, Linear Integer Arithmetic yes

QF UFLRA Uninterpreted Functions, Linear Real Arithmetic yes

QF UFNIA Uninterpreted Functions, Nonlinear Integer Arithmetic yes

QF UFNIRA Uninterpreted Functions, Mixed Nonlinear Arithmetic yes

QF UFNRA Uninterpreted Functions, Nonlinear Real Arithmetic yes

UFLRA Nonlinear Real Arithmetic, Quantifiers, Uninterpreted Functions no

UFNIA Nonlinear Integer Arithmetic, Quantifiers, Uninterpreted Functions no

Table 1.2: Logics Supported by Yices 2

5



From: ...
Subject: Yices 1.0.36 segfault
To: yices-bugs@csl.sri.com

Hi,

I am experiencing a segmentation fault from Yices. I have attached
a small test case that causes the crash. I am using Yices 1.0.36 on
x86_64 statically linked against GMP on Ubuntu 12.04.
...

Figure 1.1: Good Bug Report

1.5 Getting Help and Reporting Bugs

The Yices website provides the latest release and information about Yices. The easiest (and
preferred) way to report a bug or ask a question about Yices is to post an issue on our
GitHub repository (https://github.com/SRI-CSL/yices2).

Alternatively, you can contact us via the Yices mailing lists:

• Send e-mail to yices-help@csl.sri.com if you have questions about Yices
usage or installation.

This mailing list is moderated, but you do not need to register to post to it. You can
register to this mailing list if you are interested in helping others.

• To report a bug, you can send an e-mail to yices-bugs@csl.sri.com.

If you report a bug, please include enough information in your report to enable us to repro-
duce and fix the problem. Figure 1.1 shows what a good bug report looks like. This example
is an edited version of real bug report that we actually received (with private information
removed). Figure 1.2 shows an example of poor bug report. This example is fictitious but
representative of what we sometimes receive on our mailing list.

Please try to use Figure 1.1 as a template and include answers to the following questions:

• Which version of Yices are you using?

• On which hardware and OS?

• How can we reproduce the bug? If at all possible send an input file or program
fragment.

6

https://github.com/SRI-CSL/yices2


From: ...
Subject: Segmentation fault
To: yices-bugs@csl.sri.com

I have just downloaded Yices. After I compile my code and link it
with Yices, there is a segmentation fault when I run the executable.

Can you help?

Thanks,
...

Figure 1.2: Poor Bug Report

From: ...
Subject: Invitation to Connect on LinkedIn
To: yices-bugs@csl.sri.com

I’d like to add you to my professional network on LinkedIn.

...

Figure 1.3: Terrible Bug Report

7



8



Chapter 2

Building Yices 2 from Source

If you download the Yices 2 source, you can choose different optional components and
features at compilation time. The main options are

• Support for the MCSAT solver (which is necessary for non-linear arithmetic).

• Support for third-party backend SAT solvers (which can provide improved perfor-
mance on bitvector problems).

• Thread-safe version of the Yices library.

We start with the simplest type of build that does not include any optional components.
We then explain how to build the optional components. The instructions are written for a
Debian-style Linux distribution such as Ubuntu, but they should work with minor adjust-
ments on other Unix variants.

2.1 Basic Build
Yices 2 is straightforward to compile on UNIX-like systems. Any recent version of GCC or
Clang should work. The compilation uses standard tools such as GNU make and sed. It
also requires the gperf utility and the GMP library. On many systems, gperf and GMP
can be installed using package managers. For example, on Ubuntu:

sudo apt-get install libgmp-dev
sudo apt-get install gperf

After this, compiling and installing Yices use standard steps.

From A Source Tarfile
If you downloaded the Yices 2 source from https://yices.csl.sri.com. Follow
these steps:

9

https://yices.csl.sri.com


tar xvf yices-2.6.2-src.tgx
cd yices-2.6.2
./configure
make -j
make check

This will build binaries and libraries, and run the regression tests. If all goes well, you can
then install Yices in /usr/local with

sudo make install

You can change the installation location by giving a --prefix option to configure.

From The Git Repository
You can also get the latest source from https://github.com/SRI-CSL/yices2
and build Yices as follows:

git clone https://github.com/SRI-CSL/yices2
cd yices2
autoconf
./configure
make -j
make check

As before, you can then install Yices in /usr/local with

sudo make install

2.2 MCSAT Support

Yices includes a solver for nonlinear arithmetic based on the Model Constructing Satis-
fiability Calculus (MCSAT). This calculus and its application to nonlinear arithmetic are
explained in [JBdM13] and [dMJ12].

The precompiled, binary distributions of Yices include the MCSAT solver and can pro-
cess nonlinear arithmetic problems. If you build Yices from source and want support
for nonlinear arithmetic, you must install two external libraries: LIBPOLY [JD17] and
CUDD [Som98] and enable MCSAT when building Yices.

LIBPOLY

The LIBPOLY source is available on GitHub at https://github.com/SRI-CSL/
libpoly. Make sure that you download the latest version of libpoly. Yices 2.6 requires
libpoly v0.1.3. Follow the instruction in libpoly’s README.md to compile and install it.

10

https://github.com/SRI-CSL/yices2
https://github.com/SRI-CSL/libpoly
https://github.com/SRI-CSL/libpoly


CUDD
We recommend downloading CUDD from the GitHub repository https://github.
com/ivmai/cudd and building it as follows:

git clone https://github.com/ivmai/cudd
cd cudd
./configure CFLAGS=-fPIC
make
sudo make install

This will install CUDD header files and libraries in /usr/local.

Note

The CUDD Makefile was created with automake-1.14. Compilation may fail if you
have a different version of automake on your system with this error:

cudd/build-aux/missing: line 81: automake-1.14: command not found
WARNING: ’automake-1.14’ is missing on your system.
...

If this happens to you, try this

aclocal
automake

Another fix is to edit the Makefile and replace ’1.14’ by your version of automake and
aclocal.

Enabling MCSAT Support in Yices
Once you have installed LIBPOLY and CUDD, you can compile Yices with MCSAT support
as follows:

./configure --enable-mcsat
make -j
sudo make install

The configure scripts will check that CUDD and LIBPOLY are present on your system, The
usual environment variables (e.g., CPPFLAGS and LDFLAGS) can be used if you install
libpoly or CUDD in a non-standad location.

2.3 Third-Party SAT Solvers

It is now possible for Yices to use third-party backend SAT solvers for bitvector solving.
Currently, we support two SAT solvers: CaDiCaL [Bie19] and CryptoMiniSat [SNC09].
You can compile Yices with support for both or only one of these solvers.

11

https://github.com/ivmai/cudd
https://github.com/ivmai/cudd


CaDiCaL

Here are the steps for downloading and installing CaDiCaL:

1. Clone the CaDiCaL repository:

git clone https://github.com/arminbiere/cadical

2. Run the CaDiCaL configure script with option -fPIC. If you’re using bash, the
following should work:

cd cadical
CXXFLAGS=-fPIC ./configure

3. Build the code and (optionally) run the tests

make
make test

4. Install the library and header file:

sudo install build/libcadical.a /usr/local/lib
sudo install -m644 src/ccadical.h /usr/local/include

CryptoMiniSat

Yices requires a patched version of CryptoMiniSat 5 that we provide at https://github.
com/BrunoDutertre/cryptominisat. Here is how you can download and build it.

1. Clone the repository:

git clone https://github.com/BrunoDutertre/cryptominisat

2. Install CryptoMiniSat’s dependencies

sudo apt-get install cmake zlib1g-dev \
libboost-program-options-dev

3. Compile and install:

cd cryptominisat
mkdir build
cd build
cmake .. -DENABLE_PYTHON_INTERFACE=OFF
make
sudo make install

12

https://github.com/BrunoDutertre/cryptominisat
https://github.com/BrunoDutertre/cryptominisat


Configure Yices 2
If both CaDiCaL and CryptoMiniSat are installed, you can configure Yices 2 as follows to
use them:

./configure CPPFLAGS=’-DHAVE_CADICAL -DHAVE_CRYPTOMINISAT’ \
LIBS=’-lcryptominisat5 -lcadical -lstdc++ -lm’

After this, you can build and install Yices as usual:

make -j
make check
sudo make install

If you want only CaDiCaL, use the following configure command instead

./configure CPPFLAGS=-DHAVE_CADICAL \
LIBS=’-lcadical -lstdc++ -lm’

If you want only CryptoMiniSat, you can use

./configure CPPFLAGS=-DHAVE_CRYPTOMINISAT \
LIBS=’-lcryptominisat5 -lstdc++’

Compilation with these backend SAT solver is compatible with MCSAT, so you add option
--enable-mcsat to any of these configure commands.

2.4 Thread-Safe API
By default, the Yices library is not re-entrant and it cannot be used in multi-threaded appli-
cations. If you need a re-entrant version of the library, you can configure and build Yices as
follows:

./configure --enable-thread-safety
make
sudo make install

When configured in this fashion, the Yices library will allow multiple threads to manipulate
separate contexts and models without causing race conditions (see Chapter 7). Sharing of
contexts or models across several threads is not supported (unless you implement your own
locking mechanism).

In the current version (Yices 2.6.2), threat-safety and MCSAT are not compatible. It is not
possible to build Yices to support MCSAT and be re-entrant.

13



2.5 Building for Windows

For Windows, we recommend building Yices using Cygwin. If you want a version that
works natively on Windows (i.e., does not depend on the Cygwin DLLs) then you can com-
pile from Cygwin using the MinGW cross-compilers. The file doc/COMPILING included
in the source distribution gives more details.

2.6 Manual and Documentation
The LATEX source for this manual is included in the Yices 2 repository. To build the manual,
make sure that you have a Latex installation (including pdflatex) and the latexmk
utility. On Ubuntu, you can install them with apt-get:

sudo apt-get install texlive latexmk

With these tools installed, you can generate the manual by typing

make doc

in the top-level Yices source directory.

The repository also includes detailed API documentation that can be built using the Sphinx
tool.1 The generated documentation can be browsed online at https://yices.csl.
sri.com/doc/index.html. You can also build a local version of this documentation
as follows.

1. Install Sphinx:

pip install sphinx

2. Build the html documentation (from the Yices top-level source directory):

cd doc/sphinx
make html

The resulting documentation will be in directory doc/sphinx/build/html.

Sphinx can generate documentation in other formats than html. For example, you can do

cd doc/sphinx
make epub

This will generate an electronic book in the epub format. This book is in a single file
Yices.epub in directory doc/sphinx/build/epub.

1See https://www.sphinx-doc.org/en/master/

14

https://yices.csl.sri.com/doc/index.html
https://yices.csl.sri.com/doc/index.html
https://www.sphinx-doc.org/en/master/


Chapter 3

Yices 2 Logic

Yices 2 specifications are written in a typed logic. The language is intended to be simple
enough for efficient processing by the tool and expressive enough for most applications.
The Yices 2 language is similar to the logic supported by Yices 1, but the most complex
type constructs have been removed.

3.1 Type System

Yices 2 has a few built-in types for primitive objects:

• the arithmetic types int and real

• the Boolean type bool

• the type (bitvector k) of bitvectors of size k, where k is a positive integer.

All these built-in types are atomic. The set of atomic types can be extended by declaring
new uninterpreted types and scalar types. An uninterpreted type denotes a nonempty col-
lection of objects with no cardinality constraint. A scalar type denotes a nonempty, finite
set of objects. The cardinality of a scalar type is defined when the type is created.

In addition to the atomic types, Yices 2 provides constructors for tuple and function types.
The set of all Yices 2 types can be defined inductively as follows:

• Any atomic type τ is a type.

• If n > 0 and σ1, . . . , σn are n types, then σ = (σ1 × . . .× σn) is a type. Objects of
type σ are tuples (x1, . . . , xn) where xi is an object of type σi.

• If n > 0 and σ1, . . . , σn and τ are types, then σ = (σ1 × . . . × σn → τ) is a type.
Objects of type σ are functions of domain σ1 × . . .× σn and range τ .

15



By construction, all the types are nonempty. Yices does not have a specific type constructor
for arrays since the logic does not distinguish between arrays and functions. For example,
an array indexed by integers is simply a function of domain int.

Yices 2 uses a simple form of subtyping. Given two types σ and τ , let σ < τ denote that σ
is a subtype of τ . Then the subtype relation is defined by the following rules:

• τ < τ (any type is a subtype of itself)

• int < real (the integers form a subtype of the reals)

• If σ1 < τ1, . . . , σn < τn then (σ1 × . . .× σn) < (τ1 × . . .× τn).

• If τ < τ ′ then (σ1 × . . .× σn → τ) < (σ1 × . . .× σn → τ ′).

For example, the type (int× int) (pairs of integers) is a subtype of (real× real) (pairs
of reals).

Two types, τ and τ ′, are said to be compatible if they have a common supertype, that is,
if there exists a type σ such that τ < σ and τ ′ < σ. If that is the case, then there exists
a unique minimal supertype among all the common supertypes. We denote the minimal
supertype of τ and τ ′ by τ t τ ′. By definition, we then have

τ < σ and τ ′ < σ ⇒ τ t τ ′ < σ.

For example, the tuple types τ = (int × real × int) and τ = (int × int × real)
are compatible. Their minimal supertype is τ t τ ′ = (int × real × real). The type
(real× real× real) is also a common supertype of τ and τ ′ but it is not minimal.

3.2 Terms and Formulas

In Yices 2, the atomic terms include the Boolean constants (true and false) as well as
arithmetic and bitvector constants.

When a scalar type τ of cardinality n is declared, n distinct constant c1, . . . , cn of type τ
are also implicitly defined. In the Yices 2 syntax, this is done via a declaration of the form:

(define-type tau (scalar c1 ... cn))

An equivalent functionality is provided by the Yices API. The API allows one to create a
new scalar type and to access n constants of that type indexed by integers between 0 and
n− 1 (check file include/yices.h for explanations).

The user can also declare uninterpreted constants of arbitrary types. Informally, uninter-
preted constants of type τ can be considered like global variables, but Yices (in particular
the Yices API) makes a distinction between variables of type τ and uninterpreted constants

16



of type τ . In the Yices API, variables are used to build quantified expressions and to support
term substitutions. Free variables are not allowed to occur in assertions.

The term constructors include the common Boolean operators (conjunction, disjunction,
negation, implication, etc.), an if-then-else constructor, equality, function application, and
tuple constructor and projection. In addition, Yices provides an update operator that can
be applied to arbitrary functions. The type-checking rules for these primitive operators are
described in Figure 3.1, where the notation t :: τ means “term t has type τ”.

There are no separate syntax or constructors for formulas. In Yices 2, a formula is simply a
term of Boolean type.

The semantics of most of these operators is standard. The update operator for functions is
characterized by the following axioms1:

((update f t1 . . . tn v) t1 . . . tn) = v

u1 6= t1 ∨ . . . ∨ un 6= tn ⇒ ((update f t1 . . . tn v) u1 . . . un) = (f u1 . . . un)

In other words, (update f t1 . . . tn v) is the function equal to f at all points except
(t1, . . . , tn). Informally, if f is interpreted as an array then the update corresponds to “stor-
ing” v at position t1, . . . , tn in the array. Reading the content of the array is nothing other
than function application: (f i1 . . . in) is the content of the array at position i1, . . . , in.

The full Yices 2 language has a few more operators not described here, and it includes exis-
tential and universal quantifiers. We do not describe the type-checking rules for quantifiers
here since Yices 2 has limited support for quantified formulas at this point.

3.3 Theories

In addition to the generic operators presented previously, the Yices language includes the
standard arithmetic operators and a rich set of bitvector operators.

3.3.1 Arithmetic

Arithmetic constants are arbitrary precision integers and rationals. Although Yices uses
exact arithmetic, rational constants can be written in floating-point notation. Internally,
Yices converts floating-point input to rationals. For example, the floating-point expression
3.04e-1 is converted to 38/125.

The Yices language supports the traditional arithmetic operators (i.e., addition, subtraction,
multiplication). The solver for non-linear arithmetic supports arbitrary division. The linear-
arithmetic solver is limited to division by non-zero constants. For example, the expression

1These are the main axioms of the McCarthy theory of arrays.

17



Boolean Operators

t :: bool

(not t) :: bool

t1 :: bool t2 :: bool

(implies t1 t2) :: bool

t1 :: bool . . . tn :: bool

(or t1 . . . tn) :: bool

t1 :: bool . . . tn :: bool

(and t1 . . . tn) :: bool

Equality

t1 :: τ1 t2 :: τ2
(t1 = t2) :: bool

provided τ1 and τ2 are compatible

If-then-else

c :: bool t1 :: τ1 t2 :: τ2
(ite c t1 t2) :: τ1 t τ2

provided τ1 and τ2 are compatible

Tuple Constructor and Projection

t1 :: τ1 . . . tn :: τn
(tuple t1 . . . tn) :: (τ1 × . . .× τn)

t :: (τ1 × . . .× τn)
(selecti t) :: τi

Function Application

f :: (τ1 × . . .× τn → τ) t1 :: σ1 . . . tn :: σn σ1 < τ1 . . . σn < τn
(f t1 . . . tn) :: τ

Function Update

f :: (τ1 × . . .× τn → τ) t1 :: σ1 . . . tn :: σn v :: σ σi < τi σ < τ

(update f t1 . . . tn v) :: (τ1 × . . .× τn → τ)

Figure 3.1: Primitive Operators and Type Checking

18



(x+4y)/3 is allowed in linear arithmetic, but 3/(x+4y) is not. The arithmetic predicates
are the usual comparison operators, including both strict and nonstrict inequalities.

We’ve added more arithmetic operations since Yices 2.4:

• abs: absolute value

• floor, ceil: integer floor and ceiling

• div, mod: integer division and modulo

• divides, is-int: check for divisibility and integrality

These operations have the usual meaning. As in the SMT-LIB Ints theory, the division and
modulo operations are defined by the following constraints:

(div x k) ∈ Z

x = k.(div x k) + (mod x k)

0 ≤ (mod x k) < |k|.

For these operations, Yices 2 extends the SMT-LIB definitions by allowing both x and k to
be arbitrary reals, not just integers.

3.3.2 Bitvectors

Yices supports all the bitvector operators defined in the SMT-LIB standards [RT06,BST12,
BFT15]. The most commonly used operators are listed in Table 3.1. They include bitvector
arithmetic (where bitvectors are interpreted either as unsigned integers or as signed inte-
gers in two’s complement representation), logical operators such as bitwise OR or AND,
logical and arithmetic shifts, concatenation, and extraction of subvectors. Other operators
are defined in the theory QF BV of SMT-LIB (cf. http://www.smtlib.org); Yices 2
supports all of them.

The semantics of all the bitvector operators is defined in the SMT-LIB standard. Like other
SMT solvers, Yices 2 follows the BTOR conventions for bitvector division by zero [BBL08].
Until recently, this was not the semantics defined by the SMT-LIB standard. The SMT-LIB
semantics changed in October 2015. It is now the same as BTOR:

Unsigned Division: If b is the zero bitvector of n bits then

(bvudiv a b) = 0b111...1

(bvurem a b) = a

19

http://www.smtlib.org


Operator and Type Meaning
bvadd :: ((bv n)× (bv n)→ (bv n)) addition
bvsub :: ((bv n)× (bv n)→ (bv n)) subtraction
bvmul :: ((bv n)× (bv n)→ (bv n)) multiplication
bvneg :: ((bv n)→ (bv n)) 2’s complement opposite
bvudiv :: ((bv n)× (bv n)→ (bv n)) quotient in unsigned division
bvudiv :: ((bv n)× (bv n)→ (bv n)) remainder in unsigned division
bvsdiv :: ((bv n)× (bv n)→ (bv n)) quotient in signed division

with rounding toward zero
bvsrem :: ((bv n)× (bv n)→ (bv n)) remainder in signed division

with rounding toward zero
bvsmod :: ((bv n)× (bv n)→ (bv n)) remainder in signed division

with rounding toward −∞
bvule :: ((bv n)× (bv n)→ bool unsigned less than or equal
bvuge :: ((bv n)× (bv n)→ bool unsigned greater than or equal
bvult :: ((bv n)× (bv n)→ bool unsigned less than
bvugt :: ((bv n)× (bv n)→ bool unsigned greater than
bvsle :: ((bv n)× (bv n)→ bool signed less than or equal
bvsge :: ((bv n)× (bv n)→ bool signed greater than or equal
bvslt :: ((bv n)× (bv n)→ bool signed less than
bvsgt :: ((bv n)× (bv n)→ bool signed greater than
bvand :: ((bv n)× (bv n)→ (bv n)) bitwise and
bvor :: ((bv n)× (bv n)→ (bv n)) bitwise or
bvnot :: ((bv n)→ (bv n)) bitwise negation
bvxor :: ((bv n)× (bv n)→ (bv n)) bitwise exclusive or
bvshl :: ((bv n)× (bv n)→ (bv n)) shift left
bvlshr :: ((bv n)× (bv n)→ (bv n)) logical shift right
bvashr :: ((bv n)× (bv n)→ (bv n)) arithmetic shift right
bvconcat :: ((bv n)× (bvm)→ (bv n+m)) concatenation
bvextracti,j((bv n)→ (bvm)) extract bits i down to j

from a bitvector of size n

Table 3.1: Bitvector Operators

20



In general, the quotient (bvudiv a b) is the largest unsigned integer that can be rep-
resented on n bits, and is smaller than a/b, and the following identity holds for all
bitvectors a and b

a = (bvadd (bvmul (bvudiv a b) b) (bvurem a b)).

Signed Division If b is the zero bitvector of n bits then

(bvsdiv a b) = 0b000..01 if a is negative

(bvsdiv a b) = 0b111...1 if a is non-negative

(bvsrem a b) = a

(bvsmod a b) = a

Beside the SMT-LIB operations, Yices includes two operators to convert between arrays of
Booleans and bitvectors. These operators were introduced in Yices 2.2.2.

• (bool-to-bv b1 . . . bn) is the bitvector obtained by concatenating n Boolean terms
b1, . . . , bn. The high-order bit is b1 and the low-order bit is bn. For example, the
expression

(bool-to-bv true false false false)

is the same as the bitvector constant 0b1000.

• (bit a i) extracts the i-th bit of bitvector a as a Boolean term. If a has n bits, then
i must be an index between 0 and n − 1. The low-order bit has index 0, and the
high-order bit has index n− 1. For example, we have

(bit (bool-to-bv false b true true) 2) = b,

where b is a Boolean term.

21



22



Chapter 4

Yices 2 Architecture

Yices 2 has a modular architecture. You can select a specific combination of theory solvers
for your needs using the API or the yices executable. With the API, you can maintain
several independent contexts in parallel, possibly each using different solvers and settings.

4.1 Main Components

The Yices 2 software can be conceptually decomposed into three main modules:

Term Database Yices 2 maintains a global database in which all terms and types are
stored. Yices 2 provides an API for constructing terms, formulas, and types in this
database.

Context Management A context is a central data structure that stores asserted formulas.
Each context contains a set of assertions to be checked for satisfiability. The context-
management API supports operations for creating and initializing contexts, for as-
serting formulas into a context, and for checking the satisfiability of the asserted
formulas. Optionally, a context can support operations for retracting assertions us-
ing a push/pop mechanism. Several contexts can be constructed and manipulated
independently.

Contexts are highly customizable. Each context can be configured to support a spe-
cific theory, and to use a specific solver or combination of solvers.

Model Management If the set of formulas asserted in a context is satisfiable, then one
can construct a model of the formulas. The model maps symbols of the formulas
to concrete values (e.g., integer or rational values, or bitvector constants). The API
provides functions to build and query models.

Figure 4.1 shows the top-level architecture of Yices 2, divided into the three main mod-
ules. Each context consists of two separate components: The solver employs a Boolean

23



Terms Contexts Models

Terms
and
types

Simplifier
Internalizer

Solver

Simplifier
Internalizer

Solver

Figure 4.1: Top-level Yices 2 Architecture

satisfiability solver and decision procedures for determining whether the formulas asserted
in the context are satisfiable. The simplifier/internalizer component converts the format
used by the term database into the internal format used by the solver. In particular, the
internalizer rewrites all formulas in conjunctive normal form, which is used by the internal
SAT solver.

4.2 Solvers

In Yices 2, it is possible to select a different solver (or combination of solvers) for the
problem of interest. Each context can thus be configured for a specific class of formulas. For
example, you can use a solver specialized for linear arithmetic, or a solver that supports the
full Yices 2 language. Figure 4.2 shows the architecture of the most general solver available
in Yices 2. A major component of all solvers is a SAT solver based on the Conflict-Driven
Clause Learning (CDCL) procedure. The SAT solver is coupled with one or more so-called
theory solvers. Each theory solver implements a decision procedure for a particular theory.
Currently, Yices 2 includes four main theory solvers:

• The UF Solver deals with the theory of uninterpreted functions with equality1. It
implements a decision procedure based on computing congruence closures, similar
to the Simplify system [DNS05], with other ideas borrowed from [NO07].

1UF stands for uninterpreted functions.

24



CDCL
SAT

Solver

UF
Solver

Array
Solver

Arithmetic
Solver

Bitvector
Solver

Figure 4.2: Solver Components

• The Arithmetic Solver deals with linear integer and real arithmetic. It implements a
decision procedure based on the Simplex algorithm [DdM06a, DdM06b].

• The Bitvector Solver deals with the theory of bitvectors.

• The Array Solver implements a decision procedure for McCarthy’s theory of arrays.

Two arithmetic solvers can be used in place of the Simplex-based solver for integer or
real difference logic. These solvers implement a decision procedure based on the Floyd-
Warshall algorithm. These solvers are more specialized and limited than the Simplex-based
solver. They must be used standalone; they cannot be combined with the UF solver.

It is possible to remove some of the components of Figure 4.2 to build simpler and more
efficient solvers that are specialized for classes of formulas. For example, a solver for pure
arithmetic can be built by directly attaching the arithmetic solver to the CDCL SAT solver.
Similarly, Yices 2 can be specialized for pure bitvector problems, or for problems combin-
ing uninterpreted functions, arrays, and bitvectors (by removing the arithmetic solver).

Yices 2 combines several theory solvers using the Nelson-Oppen method [NO79]. The
UF solver is essential for this purpose; it coordinates the different theory solvers and ensures
global consistency. The other solvers (for arithmetic, arrays, and bitvectors) communicate
only with the central UF solver and never directly with each other. This property con-
siderably simplifies the design and implementation of theory solvers. More details on the
theory-combination method implemented by Yices are given in a tool paper [Dut14].

25



4.3 Context Configurations

A context can be configured to use different solvers and to support different usage scenarios.
The basic operations on a context include:

• asserting one or more formulas

• checking satisfiability of the set of assertions

• building a model if the assertions are satisfiable

Optionally, a context can support addition and removal of assertions using a push/pop mech-
anism. In this case, the context maintains a stack of assertions organized in successive lev-
els. The push operation starts a new level, and the pop operation removes all assertions at
the top level. Thus, push can be thought as setting a backtracking point and pop restores the
context state to a previous backtracking point.

Support for push and pop induces some overhead and may disable some preprocessing
and simplification of assertions. In some cases, it is then desirable to use a context without
support for push and pop, in order to get higher performance. Yices 2 allows users to control
the set of features supported by a context by selecting a specific operating mode.

• The simplest mode is one-shot. In this mode, one can assert formulas then make a
one call to the check operation. Assertions are not allowed after the call to check.
This mode is the most efficient as Yices may apply powerful preprocessing and sim-
plification (such as symmetry breaking [DFMWP11]).

• The next mode is multi-checks. In this mode, several calls to the check operation are
allowed. One can assert formulas, call check, assert more formulas and call check
again. This can be done as long as the context is satisfiable. Once check returns
unsat, then no assertions can be added. This mode avoids the overhead of main-
taining a stack of assertions.

• The default mode is push-pop. In this mode, a context supports the push and pop
operations. Assertions are organized in a stack as explained previously.

• The last mode is interactive. This mode provides the same functionalities as push-
pop but the context is configured to recover gracefully when a check operation times
out or is interrupted.

4.4 MCSAT

Since version 2.4.0, Yices includes another solver that uses a different approach and ar-
chitecture. This new solver is based on the Model Constructing Satisfiability Calculus

26



(MCSAT), and it is currently dedicated to quantifier-free nonlinear real arithmetic. The the-
ory and implementation of MCSAT is discussed in several publications [JBdM13, dMJ13].
Currently, this solver can process input written in the SMT-LIB 2.0 or Yices notations. The
MCSAT solver is required for nonlinear arithmetic, but it also supports other theories such
as uninterpreted functions or bitvectors.

4.5 Third-Party SAT Solvers

In Yices 2.6.2, we have added support for using third-party Boolean satisfiability solvers.
Such solvers are optional but can provide significant performance improvements on bit-
vector problems. Use of these SAT solvers is enabled by a command-line option and is
currently restricted to non-incremental QF BV problems. If an external solver is selected,
Yices will perform “bit blasting,” that is, convert the problem to an equisatisfiable SAT
problem in conjunctive normal form (CNF) and use the third-party solver to check satisfia-
bility of this CNF formula.

27



28



Chapter 5

Yices Tool

The Yices 2 distribution includes a tool for processing input written in the Yices 2 lan-
guage. This tool is called yices (or yices.exe in the Windows and Cygwin distribu-
tions). The syntax and the set of commands supported by yices are explained in the file
doc/YICES-LANGUAGE included in the distribution. Several example specifications are
also included in the examples directory.

(define-type BV (bitvector 32))

(define a::BV)
(define b::BV)
(define c::BV (mk-bv 32 1008832))
(define d::BV)

(assert (= a (bv-or (bv-and (mk-bv 32 255)
(bv-not (bv-or b (bv-not c))))

(bv-and c (bv-xor d (mk-bv 32 1023))))))

(check)

(show-model)
(eval a)
(eval b)
(eval c)
(eval d)

Figure 5.1: Example Yices Script

29



5.1 Example

To illustrate the tool usage, consider file examples/bv test2.ys shown in Figure 5.1.
The first line defines a type called BV. In this case, BV is a synonym for bitvectors of size 32.
Then four terms are declared of type BV. The three constants a, b, and d are uninterpreted,
while c is defined as the bitvector representation of the integer 1008832. The next line of the
file is an assertion expressing a constraint between a, b, c, and d. The command (check)
checks whether the assertion is satisfiable. Since it is, command (show-model) asks for
a satisfying model to be displayed. The next commands ask for the value of four terms in
the model.

To run yices on this input file, just type

yices examples/bv_test2.ys

The tool will output something like this:

sat
(= d 0b00000000000000000000000000000000)
(= b 0b00000000000000000000000000000000)
(= a 0b00000000000000000000000011000000)

0b00000000000000000000000011000000
0b00000000000000000000000000000000
0b00000000000011110110010011000000
0b00000000000000000000000000000000

The result of the (check) command is shown on the first line (i.e., sat for satisfiable).
The next three lines show the model as an assignment to the three uninterpreted terms a,
b, and d. Then, the tool displays one bitvector constant for each of the (eval ...)
command.

Since this example contains only terms and constructs from the bitvector theory, we could
specify logic QF BV on the command line as follows:

yices --logic=QF_BV examples/bv_test2.ys

Since the file does not use push and pop, and it contains only one call to (check), we
can select the mode one-shot:

yices --logic=QF_BV --mode=one-shot examples/bv_test2.ys

‘To get a more detailed output, we can give a non-zero verbosity level:

yices --verbosity=4 examples/bv_test2.ys

30



(define x::real)

(assert
(forall (y::real)

(=> (and (< (* -1 y) 0) (< (+ -10 y) 0))
(< (+ -7 (* -2 x) y) 0))))

(ef-solve)
(show-model)

Figure 5.2: Example Exists/Forall Problem

5.2 Exists/Forall Problems

Yices can solve a restricted class of quantified problems, known as exists/forall problems.
As the name indicates, such problems are of the following general form:

∃x1, . . . , xn : ∀y1, . . . , ym : P (x1, . . . , xn, y1, . . . , ym).

In many applications, the goal to find values a1, . . . , an for the existentially quantified vari-
ables x1, . . . , xn such that the following formula

∀y1, . . . , ym : P (a1, . . . , an, y1 . . . , ym)

is valid.

Yices can solve such problems when the quantified variables x1, . . . , xn and y1, . . . , ym
either have finite type or are real variables. The algorithm implemented in Yices and an
example application are described in [GSD+14].

Figure 5.2 shows how exists/forall problems are specified in the Yices language. Global
declarations, such as the uninterpreted constant x in the figure, correspond to the existential
variables. Constraints are then stated as assertions be of the form (forall (y ...)
P) where y ... are universal variables. It is allowed to have several assertions of this
form, as well as quantifier-free constraints on the global variables.

The command (ef-solve) invokes the exists/forall solver. This commands is similar to
(check). It reports sat if the problem is satisfiable, unsat if it is not, or unknown
if the solver does not terminate within a fixed number of iterations. If (ef-solve) re-
turns sat, then we can display the solution it has found using (show-model). This is
illustrated in Figure 5.2.

To run yices on this example, we must give option --mode=ef on the command line:

yices --mode=ef test.ys

This will produce the following output:

31



sat
(= x 2)

The first line is the result of (ef-solve). The second line is the model, which just shows
the value of the global variable x.

As previously, we can get more detailed output by increasing the verbosity:

yices --mode=ef --verbosity=5 test.ys

It is also possible to specify a logic on the command-line.

5.3 Unsat Cores

Since version 2.6.1, the Yices tool can produce unsat cores. This feature comes in two
flavors, as in SMT-LIB 2.6.

5.3.1 Labeled Assertions

The first method is illustrated in Figure 5.3. One gives labels to assertions and command
(show-unsat-core) displays an unsat core when a call to (check) returns unsat.
The labels can be any symbols; there is a separate name space for these labels.

(define x::real)

(assert (>= x 0)) ;; regular assertion
(assert (> x 3) A) ;; labeled assertion: A is the label
(assert (< x 3) B) ;; labeled assertion
(assert (= x 3) C) ;; another labeled assertion
(check) ;; will return unsat
(show-unsat-core) ;; display unsat core

Figure 5.3: Unsat cores using labeled assertions

5.3.2 Check With Assumptions

The second method uses command (check-assuming ...), a variant of the (check)
command that takes a list of assumptions as arguments. This is illustrated in Figure 5.4. An
assumption is a restricted form of terms. It can be either <name> or (not <name>),
where <name> is the name of a Boolean term. If (check-assuming) returns unsat,
then one can get an unsat core using (show-unsat-assumptions). This command
shows a subset of the assumptions that are inconsistent with the context.

32



(define x::real)
(define A::bool (> x 3))
(define B::bool (> x 2))
(define C::bool (> x 4))

(assert (and (>= x 0) <= x 5)) ;; regular assertion
(check-assuming A (not B) C) ;; will return unsat
(show-unsat-assumptions) ;; unsat core: (A (not B))

Figure 5.4: Check with assumptions

5.4 Tool Invocation

Yices is invoked on an input file by typing

yices [option] <filename>

If no <filename> is given, yiceswill run in interactive mode and will read the standard
input. The following options are supported.

--logic=<name> Select an SMT-LIB logic.

The <name> must either be an SMT-LIB logic name such as QF UFLIA or the special
name NONE.

Yices recognizes the logics defined at http://www.smtlib.org (as of July 2014).
Option --logic=NONE configures yices for propositional logic.

By default—that is, if no logic is given—yices includes all the theory solvers de-
scribed in Section 4.2. In this default configuration, yices supports linear arithmetic,
bitvectors, uninterpreted functions, and arrays. If a logic is specified, yices uses a spe-
cialized solver or combination of solvers that is appropriate for the given logic. Some
of the search parameters will also be set to values that seem to work well for this logic
(based on extensive benchmarking). All the search parameters can also be modified
individually using the command (set-param ...).

If option --logic=NONE is given, then yices includes no theory solvers at all. All
assertions must be purely propositional (i.e., involve only Boolean terms).

If the selected logic includes nonlinear arithmetic (e.g., --logic=QF UFNRA), then
yices will automatically select the MCSAT solver. To force use of the MCSAT solver
on logics that do not require it, use command-line option --mcsat.

--arith-solver=<solver> Select one of the possible arithmetic solvers.
<solver> must be one of simplex, floyd-warshall, or auto.

33

http://www.smtlib.org


If the logic is QF IDL (integer difference logic) or QF RDL (real difference logic), then
this option can be used to select the arithmetic solver: either the generic Simplex-
based solver or a specialized solver based on the Floyd-Warshall algorithm. If option
--arith-solver=auto is given, then the arithmetic solver is determined automati-
cally; the default is auto.

This option has no effect for logics other than QF IDL or QF RDL.

--mode=<mode> Select solver features.
<mode> can be one-shot, multi-checks, push-pop, interactive, or ef.

The mode ef enables the exists/forall solver. In this mode, Yices can solve problems
with universally quantified variables. The command (ef-solve) can be used for a
single block of assertions. No assertions are allowed after the call to (ef-solve).

The other four modes select the set of functionalities supported by the solver as follows:

• one-shot: no assertions are allowed after the (check) command. In this mode,
yices can check satisfiability of a single block of assertions and possibly build a
model if the assertions are satisfiable.

• multi-checks: several calls to (assert) and (check) are allowed.
• push-pop: like multi-checks but with support for adding and retracting as-

sertions via the commands (push) and (pop).
• interactive: supports the same features as the push-pop mode, but with a

different behavior when (check) is interrupted.

In the first two modes, yices employs more aggressive simplifications when processing
assertions; this can lead to better performance on some problems.

Unsat cores and checks with assumptions are not supported in mode one-shot.

In interactive mode, the solver context is saved before every call to (check) and it is
restored if (check) is interrupted. This introduces some overhead, but the solver re-
covers gracefully if (check) is interrupted or times out. In the non-interactive modes,
the solver exits after the first interruption or timeout.

The default mode is push-pop if a file name is given on the command line. If not input
file is given, then the default mode is interactive and the solver reads standard
input.

Mode one-shot is required to use the Floyd-Warshall solvers.

--mcsat Force use the MCSAT solver.

This option forces yices to use the MCSAT solver instead of the default CDCL(T )
solver. By default, MCSAT is used only if the logic includes non-linear arithmetic.
Using option --mcsat selects the MCSAT solver on other logics. For example, this
can be used to use the MCSAT solver on bitvector problems.

34



--print-success Print ok after every command that would otherwise execute silently.

Many commands are executed silently by yices (i.e., they produce no output). This can
be a problem for tools that interact with yices via pipes or files. Option --print-success
modifies this behavior. With this option, yices will print ok on its standard output
when a command successfully executes.

--version, -V Display version information then exit.

This displays the Yices version number, the version of the GMP library linked with
Yices, and information about build date and platform. For example, here is the output
for Yices 2.2.0 built on MacOS X

Yices 2.2.0
Copyright SRI International.
Linked with GMP 5.1.3
Copyright Free Software Foundation, Inc.
Build date: 2013-12-21
Platform: x86_64-apple-darwin13.0.2 (release)

If you ever have to report a bug, please include this version information in your bug
report.

--help, -h Print a summary of options

--verbosity=<level>, -v <level> Run in verbose mode.

As indicated in this list, some options can be given either in a long form (like --verbosity=4)
or in an equivalent short from (like -v 4). In all cases the long and short forms are equiv-
alent.

5.5 Input Language

The syntax of the Yices input language is summarized in Figures 5.5 to 5.8.

5.5.1 Lexical Elements

Comments

Input files may contain comments, which start with a semi-colon ‘;’ and extend to the end
of the line.

35



<command> ::=
( define-type <symbol> )

| ( define-type <symbol> <typedef> )
| ( define <symbol> :: <type> )
| ( define <symbol> :: <type> <expression> )
| ( assert <expression> )
| ( assert <expression> <symbol> )
| ( exit )
| ( check )
| ( check-assuming <assumption-list> )
| ( push )
| ( pop )
| ( reset )
| ( show-model )
| ( eval <expression> )
| ( echo <string> )
| ( include <string> )
| ( set-param <symbol> <immediate-value> )
| ( show-param <symbol> )
| ( show-params )
| ( show-stats )
| ( reset-stats )
| ( set-timeout <number> )
| ( show-timeout )
| ( dump-context )
| ( help )
| ( help <symbol> )
| ( help <string> )
| ( ef-solve )
| ( export-to-dimacs <string> )
| ( show-implicant )
| ( show-unsat-core )
| ( show-unsat-assumptions )
| ( show-reduced-model )
| EOS

Figure 5.5: Yices Syntax: Commands

36



<immediate-value> ::=
true

| false
| <number>
| <symbol>

<number> ::= <rational> | <float>

<assumption-list> ::=
|
| <assumption> <assumption-list>

<assumption> ::=
| <symbol>
| ( not <symbol> )

Figure 5.6: Yices Syntax: Command Arguments

<typedef> ::=
<type>

| ( scalar <symbol> ... <symbol> )

<type> ::=
<symbol>

| ( tuple <type> ... <type> )
| ( -> <type> ... <type> <type> )
| ( bitvector <rational> )
| int
| bool
| real

Figure 5.7: Yices Syntax: Types

37



<expr> ::=
true

| false
| <symbol>
| <rational>
| <float>
| <binary bv>
| <hexa bv>
| ( forall ( <var_decl> ... <var_decl> ) <expr> )
| ( exists ( <var_decl> ... <var_decl> ) <expr> )
| ( lambda ( <var_decl> ... <var_decl> ) <expr> )
| ( let ( <binding> ... <binding> ) <expr> )
| ( update <expr> ( <expr> ... <expr> ) <expr> )
| ( <function> <expr> ... <expr> )

<function> ::=
<function-keyword>

| <expr>

<var_decl> ::= <symbol> :: <type>

<binding> ::= ( <symbol> <expr> )

Figure 5.8: Yices Syntax: Expressions

38



Strings

Strings are similar to strings in C. They are delimited by double quotes " and may contain
escaped characters:

• The characters \n and \t are replaced by newline and tab, respectively.

• The character \ followed by at most three octal digits (i.e., from 0 to 7) is replaced
by the character whose ASCII code is the octal number.

• In all other cases, \<char> is replaced by <char> (including if <char> is a new-
line or \).

• A newline cannot occur inside the string, unless preceded by \.

Numerical Constants

Numerical constants can be written as decimal integers (e.g., 44 or -3), rational (e.g.,
-1/3), or using a floating-point notation (e.g., 0.07 or -1.2e+2). Positive constants can
start with an optional + sign. For example +4 and 4 denote the same number.

Bitvector Constants

Bitvector constants can be written in a binary format using the prefix 0b or in hexadecimal
using the prefix 0x. For example, the expressions 0b01010101 and 0x55 denote the
same bitvector constant of eight bits.

Symbols

A symbol is any character string that’s not a keyword (see Table 5.1) and doesn’t start with
a digit, a space, or one of the characters (, ), ;, :, and ". If the first character is + or -,
then it must not be followed by a digit. Symbols end by a space, or by any of the characters
(, ), ;, :, or ". Here are some examples:

a_symbol __another_one X123 &&& +z203 t\12

All the predefined keywords and symbols are listed in Table 5.1.

5.5.2 Declarations

A declaration either introduces a new type or term or gives a name to an existing type or
term. Yices uses different name spaces for types and terms. It is then permitted to use the
same name for a type and for a term.

39



* + -
-> / /=
< <= <=>
= => >
>= ˆ abs
and assert bit
bitvector bool bool-to-bv
bv-add bv-and bv-ashift-right
bv-ashr bv-comp bv-concat
bv-div bv-extract bv-ge
bv-gt bv-le bv-lshr
bv-lt bv-mul bv-nand
bv-neg bv-nor bv-not
bv-or bv-pow bv-redand
bv-redor bv-rem bv-repeat
bv-rotate-left bv-rotate-right bv-sdiv
bv-sge bv-sgt bv-shift-left0
bv-shift-left1 bv-shift-right0 bv-shift-right1
bv-shl bv-sign-extend bv-sle
bv-slt bv-smod bv-srem
bv-sub bv-xnor bv-xor
bv-zero-extend ceil check
define define-type distinct
div divides dump-context
echo ef-solve eval
exists exit export-to-dimacs
false floor forall
help if include
int is-int ite
lambda let mk-bv
mk-tuple mod not
or pop push
real reset reset-stats
scalar select set-param
set-timeout show-implicant show-model
show-param show-params show-reduced-model
show-stats show-unsat-core show-unsat-assumptions
true tuple tuple-update
update xor

Table 5.1: Keywords and predefined symbols

40



Type Declaration

A type declaration is a command of the following two forms.

(define-type name)
(define-type name type)

The fist form creates a new uninterpreted type called name. The second form gives a name
to an existing type. After this definition, every occurrence of name refers to type. A
variant of this second form is used to define scalar types. In these two commands, name
must be a symbol that’s not already used as a type name.

Term Declaration

A term is declared using one for the following two commands.

(define name :: type)
(define name :: type term)

The first form declares a new uninterpreted term of the given type. The second form
assigns a name to the given term, which must be of type type. The name must be a
symbol that’s not already used as a term name.

5.5.3 Types

Yices includes a few predefined types for arithmetic and bitvectors. One can extend the
set of atomic types by creating uninterpreted and scalar types. In addition to the atomic
types, Yices provides constructors for tuple and function types. More details about types
and subtyping are given in Section 3.1.

Predefined Types

The predefined types are bool, int, real, and (bitvector k) where k is a positive
integer. For example a bit-vector variable b of 32 bits is declared using the command

(define b::(bitvector 32))

The number of bits must be positive so (bitvector 0) is not a valid type. There is also
a hard-coded limit on the size of bitvectors (namely, 228−1). Of course, this is a theoretical
limit; the solver will most likely run out of memory if you attempt to use bitvectors that are
that large.

41



Uninterpreted Types

A new uninterpreted type T can be introduced using the command

(define-type T)

This command will succeed provided T is a fresh type name, that is, if there is no exist-
ing type called T. As explained in Section 3.1, an uninterpreted type denotes a nonempty
collection of objects. There is no cardinality constraint on T, except that T is not empty.

Scalar Type

A scalar type is defined by enumerating its elements. For example, the following declaration

(define-type P (scalar A B C))

defines a new scalar type called P that contains the three distinct constants A, B, and C.
Such a declaration is valid provided P is a fresh type name and A, B, and C are all fresh
term names.

The enumeration must include at least one element, but singleton types are allowed. For
example, the following declaration is valid.

(define-type Unit (scalar One))

It introduces a new type Unit of cardinality one, and which contains One as its unique
element. Thus, any term of type Unit is known to be equal to One.

Tuple Types

A tuple type is written (tuple tau 1 ... tau n) where tau i is a type. For ex-
ample, the type of pairs of integer can be declared as follows:

(define-type Pairs (tuple int int))

Then one can declare an uninterpreted constant x of this type as follows

(define x::Pairs)

This is equivalent to the declaration

(define x::(tuple int int))

Tuple types with a single component are allowed. For example, the following declaration
is legal.

(define-type T (tuple bool))

42



Function Types

A function type is written (-> tau 1 ... tau n sigma), where n is positive, and
the tau is and sigma are types. The types tau 1, . . ., tau n define the domain of the
function type, and sigma is the range. For example, a function defined over the integers
and that returns a Boolean can be declared as follows:

(define f::(-> int bool))

Yices does not have a distinct type construct for arrays. In Yices, arrays are the same as
functions.

5.5.4 Terms
Yices uses a Lisp-like syntax. For example, the polynomial x+ 3y + z is written

(+ x (* 3 y) z)

In general, all associative operations can take one, two, or more arguments. For example,
one can write

(or A) (or A B) (or A B C D)

since or is associative.

If-Then-Else

Yices provides an if-then-else construct that applies to any type. An if-then-else term can
be written using either one of the two following forms

(ite c t1 t2) (if c t1 t2)

Both forms are equivalent and just mean “if c then t1 else t2.” The condition c must
be a Boolean term, and the two terms t1 and t2 must have compatible types. If t1 and
t2 have the same type τ then (ite c t1 t2) also has type τ . Otherwise, as explained
in Section 3.1, the type of (if c t1 t2) is the minimal supertype of t1 and t2. For
example, if t1 has type int and t2 has type real, then (ite c t1 t2) has type
real.

Equalities and Disequalities

Equalities and disequalities are written as follows

(= t1 t2) (/= t1 t2)

where t1 and t2 are two terms of compatible types. These operators are binary. Unlike
SMT-LIB 2, Yices does not support constraints such as (= x y z t u). On the other
hand, Yices includes an n-ary distinct operator that generalizes disequality.

The Boolean term

43



(distinct t_1 .... t_n )

is true if t 1, . . . , t n are all different from each other. The terms t 1 to t n must all have
compatible types. There must be at least two arguments. The expression (distinct a
b) means the same thing as (/= a b).

Boolean Operators

true false
and or
not xor
<=> =>

Table 5.2: Boolean Constants and Operators

The usual Boolean constants and functions are available. They are listed in Table 5.2. The
associative and commutative operators or, and, and xor can take any number of argu-
ments. The equivalence (<=>) and implication (=>) operators take exactly two arguments.

One can also use the equality and disequality operators with Boolean terms. If t1 and t2
are Boolean then (= t1 t2) is the same as (<=> t1 t2), and (/= t1 t2) is the
same as (xor t1 t2).

Basic Arithmetic

Syntax Meaning
(+ a1 ... a n) sum a1 + . . .+ an
(* a1 ... a n) product a1 × . . .× an
(- a) opposite −a
(- a1 a2 ... a n) difference a1 − a2 − . . .− an
(ˆ a k) exponentiation ak

(/ a c) division a/c
(<= a1 a2) inequality a1 ≤ a2
(>= a1 a2) inequality a1 ≥ a2
(< a1 a2) strict inequality a1 < a2
(> a1 a2) strict inequality a1 > a2

Table 5.3: Arithmetic Operations

Arithmetic constants can be written in decimal, as rationals, or using the floating point
notation. Internally, Yices uses exact rational arithmetic and it represents all arithmetic
constants as rationals.

44



The usual arithmetic operations and comparison operators are summarized in Table 5.3.
One can freely mix terms of real and integer types in all operations. The exponent k in
(ˆ a k) must be a non-negative integer constant. The divisor c in (/ a c) must be a
non-zero constant.

The Yices language includes more than linear arithmetic, but this is for future extensions.
Currently, Yices does not include solvers for non-linear arithmetic (cf. Section 4.2).

Arithmetic Functions

Other arithmetic operations defined in Yices are listed in Table 5.4. The operations abs,
floor, and ceil have the usual meaning:

• (abs x) is the absolute value of x.

• (floor x) is the largest integer less than or equal to x.

• (ceil x) is the smallest integer larger than or equal to x.

For integer division and modulo, Yices uses the SMT-LIB conventions (see Section 3.3.1),
except that the divider kmust be a non-zero constant and that both div and mod are defined
over the reals, not just the integers. Division by a non-constant term is not supported.

In the divisibility test (divides k x), the divider k must be a rational constant but it
can be zero. The term x can be any real. The atom (divides k x) is true if there exists
an integer n ∈ Z such that x = nk.

Syntax Meaning
(abs x) absolute value
(floor x) floor
(ceil x) ceiling
(div x k) integer division
(mod x k) modulo
(divides k x) divisibility test
(is-int x) integrality test

Table 5.4: Arithmetic Functions

Bitvectors Constants

A bitvector constant can be written in binary or hexadecimal notation, as follows

0b0 0b1 0xFFFF 0xaaaa 0xC0C0D0D0

In the binary notation, the number of bits in the constant is equal to be number of binary
digits. For example, the three terms

45



Syntax Meaning
(bv-add u1 ... u n) sum
(bv-mul u1 ... u n) product
(bv-sub u1 ... u n) subtraction
(bv-neg u) 2s-complement
(bv-pow u k) exponentiation
(bv-not u) bitwise complement
(bv-and u1 ... u n) bitwise and
(bv-or u1 ... u n) bitwise or
(bv-xor u1 ... u n) bitwise xor
(bv-nand u1 ... u n) bitwise nand
(bv-nor u1 ... u n) bitwise nor
(bv-xnor u1 ... u n) bitwise xnor

Table 5.5: Bitvector Operations (Arithmetic and Bitwise Logic)

0b1 0b0001 0b00001

denote distinct bitvector constants, of one, four, and five bits, respectively. In the hexadeci-
mal notation, the number of bits is equal to four times the number of hexadecimal digit.

One can also construct a bitvector constant using the expression:

(mk-bv size value)

In this expression, both size and value must be integer constants; size is the number
of bits in the bitvector constant and value is the decimal value of the constant interpreted
as a non-negative integer. The size must then be positive, and the value must be non-
negative. If value is more than 2size, only the residue of value modulo 2size is taken
into account. For example, the expressions

(mk-bv 3 6) (mk-bv 3 22)

construct the same bitvector constant (whose binary representation is 0b110).

Bitvector Arithmetic

Table 5.5 lists all the arithmetic and bitwise operators. All operators in this table take
arguments that have the same size and return a result of that size. As usual, the associative
operators can take one, two, or more arguments. The bv-sub operator takes at least two
arguments. In (bv-pow u k), the power k must be a non-negative integer constant.

The expression (bv-xnor u1 ... u n) is the same as (bv-not (bv-xor u1
... u n)).

46



Syntax Meaning
(bv-shift-left0 u k) left shift, padding with 0
(bv-shift-left1 u k) left shift, padding with 1
(bv-shift-right0 u k) right shift, padding with 0
(bv-shift-right1 u k) right shift, padding with 1
(bv-ashift-right x k) arithmetic shift by k bits
(bv-rotate-left x k) rotate by k bits to the left
(bv-rotate-right x k) rotate by k bits to the right
(bv-shl u v) left shift (padding with 0)
(bv-lshr u v) logical right shift (padding with 0)
(bv-ashr u v) arithmetic shift (padding with the sign bit)

Table 5.6: Bitvector Operations (Shift and Rotate)

Syntax Meaning
(bv-extract i j u) subvector extraction
(bv-concat u1 ... u n) concatenation
(bv-repeat u k) repeated concatenation
(bv-sign-extend u k) sign extension
(bv-zero-extend u k) zero extension
(bv-redor u) or-reduction
(bv-redand u) and-reduction
(bv-redcomp u v) equality reduction

Table 5.7: Bitvector Operations (Structural Operators)

Bitvector Shift and Rotate

Table 5.6 lists the shift and rotate operations. The operations in the first seven rows shift
a bitvector u by a fixed number of bits k. If u is a bitvector of n bits, then k must be an
integer constant such that 0 ≤ k ≤ n. The bv-shl, bv-lshr, and bv-ashr operators
(last three rows of Table 5.6) take two bitvector arguments u and v, which must be bitvectors
of the same size n. The shift operation is applied to u and the value of v, interpreted as an
unsigned integer in the range [0, 2n − 1], defines the shift amount. The semantics follows
the SMT-LIB standards: if v’s value is more than n then the padding bit is copied n times.

Bitvector Structural Operations

The operators in Table 5.7 perform extraction, concatenation, and other structural opera-
tions. The expression (bv-extract i j u) is the segment of bitvector u formed by
taking bits j, j+1, . . . , i. If u is a bitvector of n bits then the constants i and j must satisfy
0 ≤ j ≤ i ≤ n− 1, and the result is a bitvector of (i− j + 1) bits. For example, we have

(bv-extract 7 2 0b110110100) = 0b101101.

47



Syntax Meaning
(bv-div u v) quotient in unsigned division
(bv-rem u v) remainder in unsigned division
(bv-sdiv u v) quotient in signed division
(bv-srem u v) remainder in signed division
(bv-smod u v) remainder in signed division (rounding to −∞)

Table 5.8: Bitvector Operations (Divisions)

In (bv-repeat u k), bitvector u is concatenated with itself k times. The integer con-
stant k must be positive. In the sign and zero extension operators, vector u is extended by
adding k bits (either zero or u’s sign bit copied k times). In these two operations, k must be
non-negative.

The bv-redor, bv-redand, and bv-redcomp operators produce a one-bit vector. The
term (bv-redor u) is the or of u’s bits; it is equal to 0b0 if all bits of u are zero, and
to 0b1 otherwise. Similarly, (bv-redand u) is the and of u’s bit; it is equal to 0b1 if
all bits of u are one and to 0b0 otherwise. In (bv-redcomp u v), the arguments u and
v must be two bitvectors of the same size. The operator performs a one-to-one comparison
of the bits of u and v and returns either 0b1, if u and v are equal, or 0b0, if u and v are
distinct.

Bitvector Division

Table 5.8 lists the division and remainder operators. In this table, u and v must be two
bitvectors of the same size n.

In the unsigned division and quotient operations, u and v are interpreted as integers in the
interval [0, 2n − 1]. As explained in section 3.3.2, (bv-div u v) is the largest integer
that can be represented using n bits and is smaller than or equal to u/v. The unsigned
remainder (bv-rem u v) satisfies the identity

u = (bv-add (bv-mul (bv-div u v) v) (bv-rem u v)).

In the signed division and quotient, u and v are interpreted as integers in the interval
[−2n−1, 2n−1− 1] (in 2s-complement representation), and the division is done with round-
ing to zero.

• If u/v is non-negative, then (bv-sdiv u v) is the largest integer q in [0, 2n−1−1]
such that 0 ≤ q ≤ u/v.

• If u/v is negative then (bv-sdiv u v) is the smallest integer q in [−2n−1, 0] such
that u/v ≤ q ≤ 0.

The signed remainder operation satisfies the identity

48



Syntax Meaning
(bv-ge u v) u ≥ v unsigned
(bv-gt u v) u > v unsigned
(bv-le u v) u ≤ v unsigned
(bv-lt u v) u < v unsigned
(bv-sge u v) u ≥ v signed
(bv-sgt u v) u > v signed
(bv-sle u v) u ≤ v signed
(bv-slt u v) u < v signed

Table 5.9: Bitvector Operations (Comparison)

u = (bv-add (bv-mul (bv-sdiv u v) v) (bv-srem u v)).

The last operator in Table 5.8 is the remainder in the signed division of u by v with round-
ing to −∞. In this operation, u and v are interpreted as signed integers in the interval
[−2n−1, 2n−1 − 1]; the quotient is bu/vc (i.e., the largest integer q such that q ≤ u/v); and
the remainder is u− qv. The special case v = 0 is explained in Section 3.3.2.

Bitvector Inequalities

Table 5.9 lists the inequality comparison operators for bitvectors. In the table, u and v must
be two bitvector terms of the same size. Depending on the operation, both are interpreted as
unsigned integers or as signed integers (using 2s-complement representation). All operators
return a Boolean. As usual, one can also apply the equality and disequality operators to two
bitvectors of the same size.

Conversions Between Booleans and Bitvectors

Two operations, listed in Table 5.10, convert Booleans to bitvectors and conversely.

Syntax Meaning
(bool-to-bv b1 ... bn) Booleans to bitvector
(bit u i) Bit extraction

Table 5.10: Bitvector Operators (Conversions)

Operator bool-to-bv builds a bitvector from n Boolean terms b1, . . . , bn. The result is
a bitvector of n bits equal to the concatenation of b1, . . . , bn. The high-order bit is b1 and
the low-order bit is bn. For example,

(bool-to-bv true true false false)

49



is equal to the bitvector constant 0b1100.

Expression (bit u i) is the i-th bit of bitvector u as a Boolean. If u is a bitvector of n
bits then the index i must be an integer constant between 0 and n− 1. The lower-order bit
has index 0 and the high-order bit has index n− 1. For example, we have

(bit 0b1100 3) = true
(bit 0b1100 2) = true
(bit 0b1100 1) = false
(bit 0b1100 0) = false

Tuples

A tuple term can be constructed using (mk-tuple t1 ... t n) where n ≥ 1 and
t1, . . . , t n are arbitrary terms. For example, a pair of integers can be constructed using

(mk-tuple -1 1)

The projection operation extracts the i-th component of a tuple. It is denoted by (select
t i) where t is a term of tuple type and i is an integer constant. If the tuple has n
components, then i must be between 1 and n. The components are indexed from 1 to n
starting from the left. For example, we have

(select (mk-tuple -1 1) 1) = -1
(select (mk-tuple -1 1) 2) = 1

Yices includes a tuple-update operator. The expression (tuple-update t i v) is
equal to tuple t with its i-th component replaced by v. The type of v must be a subtype of
the i-th component of t.

Function Updates

Array or function update is written (update a (i 1 ... i n) v). In this expres-
sion, amust be a term with a function type and n is the arity of a. The expression constructs
a function b that is equal to a, except that it maps i 1,. . . ,i n to v. The semantics and
typechecking rules of this operator are explained in Section 3.2.

5.5.5 Commands

The Yices commands allow one to declare types and terms, build a set of assertions, check
their satisfiability, and query models. Other commands set parameters that control prepro-
cessing and heuristics used by the different solvers.

50



Declarations

As presented in Section 5.5.2, a type declaration has one of the following forms

(define-type name)
(define-type name type)

A term declaration is similar:

(define name :: type)
(define name :: type term)

To define a function, one can use the lambda notation. Here is an example:

(define max::(-> real real real)
(lambda (x::real y::real) (if (< x y) y x)))

This defines the function max that computes the maximum of two real numbers. Note that
such a function definition acts like a macro. A term of the form (max a b) is eagerly
replaced by the “function body”, that is, by the term (if (< a b) b a). The ability
to define function is useful to abbreviate specifications, but it must be used with care. Since
the substitution is performed eagerly, the expanded terms may grow quickly, especially if
they contain nested function applications.

All declarations have global scope and are permanent. They are not affected by commands
such as push, pop, or reset. Also, as discussed previously, Yices uses separate name spaces
for terms and for types.

Assertions

The following command adds an assertion to the current context.

(assert formula)

In this command, the formula must be a Boolean term.

In the mode one-shot, assertions are stored internally and are not processed immediately.
Processing of assertions is delayed, and all assertions are processed and simplified on the
first call to (check).

In all other modes, the assertions are processed and simplified immediately and are added
to the context. As a result, yices may detect and report that the current set of assertions
is inconsistent after an assert command. This happens when the context is seen to be
unsatisfiable by simplification only. The most trivial example is:

(assert false)

Once the context is unsatisfiable, any new assertion is treated as an error.

51



Labeled Assertions

An optional label can be provided for assertions as follows:

(assert formula label)

In this command, the formula must be a Boolean term and the label must be a symbol.
Yices uses a separate name space for storing these labels, so the same symbol can be used
as a type name or a term name.

The label identifies the assertion as relevant to unsat core If a call to (check) returns
unsat, then a corresponding unsat core is a subset of all the labeled assertions that is
inconsistent with the context. Command (show-unsat-core) displays this unsat core
by listing the labels of all the assertions in the core.

The labeled assertions must have distinct labels. Yices will complain if the label provided
is already used. The set of labeled assertions is maintained in a stack like regular assertions.
For example, labeled assertions may be removed by a call to (pop) or (reset).

Check

The command

(check)

checks whether the current set of assertions is satisfiable.

If the context’s current status is already known, then the command returns immediately
and prints the status as either sat or unsat. This happens, for example, in the following
situation:

(assert ...)
(check)
(check)

The context status is known after the first (check) command (provided this command
does not timeout or otherwise fails). Then the second (check) does nothing and just
prints the current status.

If the context’s status is unknown, then (check) invokes the SMT solver to establish
whether the assertions are satisfiable. As discussed previously, the actual solver or solver
combination is dependent on command-line options given to the yices tool. In particular,
the --logic option allows one to select a solver architecture that is specialized for a
particular logic. For best performance, it is usually better to specify the logic if it is known
in advance.

Several parameters also control the heuristics employed by the solver. Yices uses default
settings based on the specified logic (or global defaults if no logic is given). All these param-
eters can be examined and modified, using the command show-params and set-param
described in a subsequent section.

52



One can also provide a timeout before calling (check). If the timeout is reached or the
search is interrupted (by CTRL-C), then the result will be displayed as interrupted.

Check With Assumptions

The command

(check-assuming <assumption> ... <assumption>)

checks whether the current set of assertions together with a list of assumptions is satisfiable.
If it is not, command (show-unsat-assumptions) will provide an unsat core (i.e., a
subset of the assumptions that are inconsistent with the context).

Each assumption must either be the name of a Boolean term or the negation of a named
Boolean term. For example, after the following definitions:

(define A::bool <expression>)

then both A and (not A) can be used as assumptions.

It is allowed for the same name to occur several times in the assumption list. It is also
allowed to give an empty list of assumptions.

Mixing assumptions and labeled assertions in a context is not supported. Command (check-assuming
...) will fail if there are labeled assertions.

Push, Pop, Reset

Command (push), (pop), and (reset) allows one to manipulate the set of assertions.

The command (reset) clears all assertions. The current context is then returned to its
initial state, where the set of assertions is empty. This command can be used in all modes.

The push and pop commands are supported by yices if it is run in mode push-pop or
interactive. In these modes, the context maintains a stack of assertions organized in
successive levels. The (push) command starts a new assertion level in this stack, and
(pop) removes all assertions at the current level. The command (assert f) adds an
assertion f to the current level. This assertion will be part of the context until this current
level is exited by either a call to (pop) or a call to (reset). Thus, a call to (pop) re-
tracts all assertions entered since the matching (push). The initial assertion level includes
all formulas that are asserted before the first (push) command. Such assertions cannot be
retracted by (pop). They remain in the context until (reset) is called.

The commands (reset) and (pop) modify the set of assertions in the context, but they
do not affect term and type declarations. For example, the following sequence of commands
is valid.

53



(push)
(define A::bool)
(assert A)
(check)
(pop)
(assert (not A))
(check)

The term A is declared after the (push) command. The (pop) command removes the first
assertion but its does not remove the declaration. Thus, A remains declared as a Boolean
term after the (pop) command. The second assertion is then valid. Both calls to (check)
return sat.

Model

If a call to (check) returns sat, then the set of assertions in the context is satisfiable.
One can request yices to construct and display a model for the assertions. One can also
evaluate the value of arbitrary terms in this model.

The command

(show-model)

displays the current model (and constructs it if necessary). An error is reported if the con-
text’s status is unknown or if the context is not satisfiable. Otherwise, the model is displayed
in the format illustrated in Figure 5.9. The model is displayed as a list of assignments, pos-
sibly followed by a list of function definitions. An assignment has the form

(= name value)

where name is an uninterpreted constant and value is a constant, that is, the value mapped
to name in the model. This format is used for all terms of atomic types (Boolean, integer
and real, bitvector, scalar, and uninterpreted types). It is also used to display the value of
terms that have tuple type. The value of an uninterpreted functions f is displayed as shown
on the right column of Figure 5.9. For each uninterpreted function, yices displays the type
of the function, a finite list of assignments, and the function’s default value. For example,
in Figure 5.9, one can see that yices has constructed a model where (b 0) and (b 1)
are true, and the default value for b is false. This means that (b x) is false for any
x different from 0 and 1.

The command

(show-reduced-model)

was introduced with Yices-2.6.2. It is similar to get-model in that it displays a model
as a list of assignments, but it tries to first simplify the model by computing a set of rel-
evant variables. The values assigned to these variables are sufficient to ensure that all the
current assertions are true. Variables that are not displayed are not necessary to satisfy the
assumptions. For example, if you call yices --mcsat on the following input:

54



Input Model

(define a::(-> int bool))
(define b::(-> int bool))
(define c::(-> int bool))
(define x::int)
(define y::int)
(assert (and (a x) (b y)))
(assert (/= x y))
(assert (distinct a b c))
(check)
(show-model)

(= y 0)
(= x -579)
(function c
(type (-> int bool))
(default true))

(function a
(type (-> int bool))
(= (a 1) false)
(default true))

(function b
(type (-> int bool))
(= (b 0) true)
(= (b 1) true)
(default false))

Figure 5.9: Model Display Format

(define x::real)
(define y::real)
(assert (= (* x y) 0))
(check)

then (show-model) will display the value of both x and y:

(= x 0)
(= y 0)

whereas (show-reduced-model) will display only one of them

(= x 0).

This assignment is sufficient to ensure the assertion (= (* x y) 0) is true, independent
of the value assigned to y.

Command

(eval term)

computes the value assigned to term in the current model, and displays this value. For
example, assuming the model shown in Figure 5.9, one can type

(eval (a y))

and the result will be true. It is also possible to ask for the value of a function term, as in

(eval (update a (y) false))

The result is displayed as a function specification such as:

55



(function fun!17
(type (-> int bool))
(= (fun!17 1) false)
(= (fun!17 0) false)
(default true))

Yices creates an internal name of the form fun!<number> to display the function value.

Unsat Cores

If a call to (check) returns unsat, then one can get an unsat core by using command

(show-unsat-core)

The unsat core is a subset of all the labeled assertions in the current context. The command
will report an error if there are no labeled assertions in the context. Otherwise, it will list
the labels of all the assertions in the core.

Unsat Assumptions

If a check with assumptions returns unsat, the following command lists an unsatisfiable
subset of the assumptions:

(show-unsat-assumptions)

The unsatisfiable subset is displayed as a list of assumptions. It is possible for this subset
to be empty, if the context is unsatisfiable on its own.

Implicants

If a set of assertions is satisfiable, one can construct an implicant for them. The implicant is
a set of literals l1, . . . , ln (i.e., atoms or negations of atoms) such that the conjunct l1∧. . .∧ln
is satisfiable and implies the assertions. To compute such an implicant, Yices first constructs
a model M of the assertions then builds the implicant from the model: all the literals li are
true in M .

The command to display an implicant is (show-implicant). It can be used only when
Yices is executed in mode one-shot. Like (show-model), it can be used after a call
to (check) that returns sat. The implicant is displayed as a list of literals, one per line.
Figure 5.10 shows an example. The assertion (distinct x y z) is not considered
atomic in this case. The implicant includes two literals equivalent to z < y ∧ y < x, which
implies that x, y, and z are distinct.

56



Input Implicant
(define x::int)
(define y::int)
(define z::int)
(assert (distinct x y z))
(assert (or (> x (+ z (* 2 y)))

(< x (- z (* 2 y)))))
(check)
(show-implicant)

(< (+ (* -1 y) z) 0)
(< (+ (* -1 x) (* 2 y) z) 0)
(< (+ (* -1 x) y) 0)

Figure 5.10: Implicant

Exists/Forall Solver

The command

(ef-solve)

checks satisfiability of an exists/forall problem. This command is available when yices is
run with option --mode=ef.

Parameters

A number of parameters controls the preprocessing and simplifications applied by Yices,
and the heuristics used by the CDCL SAT solver and the theory solvers. Several commands
allow one to examine and modify these parameters.

To see the list of all available parameters, and their current values, type

(show-params)

If you want to see the value of a specific parameter, type

(show-param name)

where name is the parameter name. To set a parameter value, use

(set-param name value)

For example, the CDCL solver can use different branching heuristics. This is controlled by
the branching parameter. To see its current value, type the command

(show-param branching)

To select a branching heuristic, use a command like

(set-param branching negative)

57



Input Result

(define a::(bitvector 4))
(define b::(bitvector 4))
(assert (bv-ge a b))
(export-to-dimacs "test.cnf")
(exit)

c Autogenerated by Yices
c
c a --> [6 7 8]
c b --> [3 4 5]
c
p cnf 10 14
1 0
-2 0
-3 9 0
-5 8 0
-5 -10 0
6 9 0
8 -10 0
-9 -6 3 0
-10 -7 4 0
-4 7 10 0
-10 9 4 0
-4 -9 10 0
-7 9 -10 0
7 10 -9 0

Figure 5.11: Export to DIMACS

There are many search and preprocessing parameters. The full list is described in the file
doc/YICES-LANGUAGE included in the distribution. You can also get on-line help on
the parameter using

(help params)

You can also get on-line help on a specific parameter. For example, the command

(help branching)

will print a short description of the parameter branching and list its possible values.

Conversion to DIMACS

Command

(export-to-dimacs file)

converts Boolean and bitvector problems to the DIMACS format. This command is sup-
ported if yices is run with option --logic=NONE or --logic=QF BV.

The argument must be the name of a file to store the result. It must be given as a string. The
command collects all the assertions and converts them to CNF, then it writes the result into
file. A mapping from Yices terms to the DIMACS literals is included.

58



Figure 5.11 shows a small example. The left-hand side is a small bitvector problem.
The right-hand side shows the DIMACS file produced by yices. The comments shows
how the two bitvector variables a and b are converted to arrays of DIMACS literals. To
produce this file, yices must be run with option --logic=QF BV.

Timeout

By default, yices does not use a timeout. So a call to (check) may take a very long
time to terminate. To limit the runtime of (check), one can give a timeout is seconds. For
example, to limit the runtime to 2 minutes:

(set-timeout 120)

This timeout will apply to the next call to (check), but not to the one after that. After
every call to (check), the timeout is reset to 0 (which means no timeout). One can also
clear the timeout explicitly by setting it to 0:

(set-timeout 0)

To see the current value of the timeout, one can use the command

(show-timeout)

Echo

The echo command can be use to print a string on the standard output. It can be useful in
Yices scripts to help display results. An example in Figure 5.12 illustrates its use.

Include

It is possible to include a Yices script using the following command:

(include filename)

where filename is the name of an input file given as a string. For example, to include the
file example.ys, type

(include "example.ys")

This command will read and execute all commands contained in the given file.

Help

The yices tool has on-line help, which can be obtained using one of the following com-
mands:

(help)
(help topic)

59



(define a::bool)
(define b::bool)
(define c::bool)
(define d::bool)
(define e::bool)

(assert (= a (or b c)))
(assert (= d (and b c)))
(assert (= a d))
(echo "First check: should be sat\n")
(check)
(show-model)

(assert (= e (xor b c)))
(assert (= e d))
(echo "\nSecond check: should be sat\n")
(check)
(show-model)

(assert d)
(echo "\nThird check: should be unsat\n")
(check)

Figure 5.12: Example Use of the echo Command

Without argument, (help) prints a summary of the main Yices commands. With an ar-
gument, (help topic) gives help on the specified topic. The argument can be a
command name, one of the built-in type or term constructor, or the name of a parameter.
The argument can be given as a string or as a symbol. For example, to get some information
on the search parameter var-elim, you can type either

(help "var-elim")

or just

(help var-elim).

On-line help is available for other topics such as the syntax. To get a list of all topics, type

(help index)

Statistics

The solver keeps track of various statistics concerning the search algorithms (e.g., the num-
ber of decisions and conflicts in the CDCL solver). The following command prints all the
internal statistics

(show-stats)

60



As part of these statistics, yices keeps track of the cumulative CPU time spent in calls to
the check command. To get time measurement for a specific call to (check) (rather than
the total amount of time spent in all calls to (check) so far), one can reset the global time
counter to zero using command (reset-stats). To get the runtime and other statistics
about a specific (check), type the following commands:

(reset-stats)
(check)
(show-stats)

Exit

At any time, one can exit the solver using the command

(exit)

If this command is part of a Yices script file, then yices exits immediately after this
command, without parsing or processing the rest of the file.

61



62



Chapter 6

Support for SMT-LIB

The yices tool described in the previous chapter processes input given in the Yices 2
language. The distribution includes two other tools that can process input in the SMT-
LIB 2.x and the older SMT-LIB 1.2 notations.

6.1 SMT-LIB 2.x

To process SMT-LIB 2.x input, use the yices-smt2 solver instead of yices. This tool
is included in the bin directory in the distribution. In the Windows or Cygwin distribution,
it is called yices-smt2.exe.

The SMT-LIB 2.6 language is defined in [BFT17]. More information about the various
logics defined in SMT-LIB is available at the SMT-LIB website: http://www.smtlib.
org. David Cok’s tutorial covers all aspects of the language in detail [Cok13].

6.1.1 Tool Invocation
To run yices-smt2 on an input file, type

yices-smt2 <input-file>

Since yices-smt2 runs in mode one-shot by default, this will work fine as long as
the <input-file> does not use the commands push and pop of SMT-LIB 2 (cf. Sec-
tion 4.3).

To enable support for push and pop, give the command-line option --incremental.
This option configures yices-smt2 to work in the mode push-pop. This flag is also
required if the input files contains several blocks of assertions and multiple calls to the
command (check-sat).

If no input file is given, yices-smt2 will read commands from the standard input.

Optionally, one can also run the solver with the following option:

63

http://www.smtlib.org
http://www.smtlib.org


yices-smt2 --interactive

When invoked in this manner, yices-smt2 will print a prompt before accepting com-
mands from standard input. In addition, option :print-success is set to true. This
causes yices-smt2 to report success after various commands that would otherwise be
executed silently (as required by [BFT15]).

Model Format

Yices has always provided a command get-model for displaying a model when asser-
tions are satisfiable. This command was added to SMT-LIB with version 2.5. By default,
Yices displays models in a format similar to the one illustrated in Figure 5.9, except that
constants are printed with the SMT-LIB 2 Syntax.

Since version 2.6.2, Yices can display models in a different format defined by SMT-LIB
(see [BFT17]). To use this format, you must invoke yices-smt2 as follows

yices-smt2 --smt2-model-format

Another option controls how bit-vector constants are displayed in (get-model) and
(get-value ...). By default, yices-smt2 prints bit-vector values as binary con-
stants (e.g., in the format #b0110 for a four-bit value). If you prefer to get bit-vector
constants converted to integers, use the following option:

yices-smt2 --bvconst-in-decimal

With this option the solver will use the the SMT-LIB 2 decimal syntax for bit-vector, such
as, (_ bv6 4). In general, a bit-vector constant will be displayed as

(_ bv<number> <size>)

where <size> is the number of bits in the constant, and <number> is an integer between
0 and 2<size> − 1.

Selecting a Back-end SAT Solver

For problems in the QF BV logic, yices-smt2 relies on so-called bit blasting by de-
fault. This amounts to converting a bit-vector formula in the QF BV logic into an equivalent
Boolean problems in CNF. To solve the resulting CNF formula, Yices will use its internal
SAT solver by default.

Since Yices 2.6.2, it is possible to select an alternative Boolean SAT solver as follows:

yices-smt2 --delegate=<solver-name>

64



where <solver-name> is either cadical, or cryptominisat, or y2sat. The first
two variants select either CaDiCaL or CryptoMiniSat5 as backend solvers. Support for
these two third-party solvers must be enabled at compilation time as explained in Chapter 2.
The y2sat solver is an experimental SAT solver that is part of the Yices code. It is always
available.

For example, to use CaDiCaL on problem bvadd 12000.smt2, type

yices-smt2 --delegate=cadical bvadd_12000.smt2

This will use CaDiCaL in quiet mode. To get more output from CaDiCaL, increase ver-
bosity:

yices-smt2 --delegate=cadical --verbosity=2 bvadd_12000.smt2

Note: yices-smt2 can sometimes solve bit-vector problems by preprocessing and sim-
plification, without producing a CNF formula. In such cases, the delegate option is
irrelevant.

Limitation: Currently, use of the delegates is restricted to non-incremental problems.

Exporting to Dimacs

In addition to using external SAT solver, you can use yices-smt2 to export the result of
bit blasting to a file in the DIMACS CNF format, You can do this as follows:

yices-smt2 --dimacs=<outputfile> <inputfile>

For example, command

yices-smt2 --dimacs=bvadd_12000.cnf bvadd_12000.smt2

will process bit-vector problem in file bvadd 12000.smt2, convert it to CNF, and export
the result in file bvadd 12000.cnf. This DIMACS file can then be processed by any
modern Boolean SAT solver.

You can also use the y2sat SAT solver to simplify the CNF formula before exporting it.
This is done by passing an extra command-line option:

yices-smt2 --dimacs=<outputfile> --delegate=y2sat <inputfile>

In this mode, yices-smt2 will first produce a CNF formula by bit blasting. This for-
mula will then be simplified by applying CNF preprocessing functions implemented by the
y2sat SAT solver. The result of this simplification is then exported in DIMACS format.

65



Note: If yices-smt2 can solve the problem by preprocessing and simplification, it will
report that the instance is either sat or unsat and it will not generate a DIMACS file.
Similarly, y2sat simplification may solve the CNF formula that results from bit blasting
on its own. In such a case, no DIMACS file is produce either.

Limitation: Conversion to DIMACS is not supported for incremental problems.

All Command-line Options

Here is the full list of command-line options supported by yices-smt2.

--verbosity=<level>, -v <level> Set the initial verbosity level.

By default, yices-smt2 runs with verbosity level 0. This can be changed by using the
SMT command (set-option :verbosity <level>). Calling yices-smt2
--verbosity=<level> has the same effect.

--incremental Enable support for push, pop, and multiple calls to check-sat.

--interactive Run in interactive mode.

This flag has no effect if yices-smt2 is called with an input-file. Otherwise,
this flag sets the :print-success option to true.

--timeout=<timeout>, -t <timeout> Give a timeout in seconds.

This sets a timeout for the SMT-LIB command (check-sat). If the timeout is
reached, the command returns unknown. In non-interactive mode, there can be only one
such command. In interactive mode, the same timeout applies to every (check-sat).

--mcsat Use the MCSAT solver.

This flag selects the MCSAT solver of Yices instead of the default CDCL-based solver.

--stats, -s Display statistics on exit.

If this option is given, yices-smt2 will print statistics after all commands have been
executed (i.e., after reaching the command (exit) or the end of the input file).

--smt2-model-format Display models in the SMT-LIB 2 format.

--bvconst-in-decimal Prints bit-vector constants as numbers (using the SMT-LIB 2
decimal syntax), instead of constants in binary notation.

--delegate=<solver> Select an external SAT solver for bit-vector problems,

The <solver> can be either cadical, or cryptominisat, or y2sat.

--dimacs=<filename> Bitblast then export the CNF to a file (in DIMACS format).

66



--version, -V Print version and exit.

--help, -h Show a summary of command-line options and exit.

--mcsat-help Show extra options used only by the MCSAT solver.

6.1.2 SMT-LIB 2.6 Compliance

Yices follows the SMT-LIB 2.6 specifications as much as possible. In this section, we list
the few special cases where Yices may not adhere to the standard.

Arithmetic

Because Yices uses a more liberal type system than SMT-LIB 2.0, it will accept input that
is not strictly compliant with SMT-LIB 2.0. The difference occurs in arithmetic problems.
Yices allows formulas to freely mix real and integer terms. In SMT-LIB 2.0, the types Int
and Real are disjoint and cannot be mixed in arithmetic expression. This should not be a
problem, as any properly typed SMT-LIB 2.0 arithmetic expression is also type-correct for
Yices.

Bitvectors

As mentioned previously, Yices follows the SMT-LIB standard definition for all bit-vector
operators except division by zero. The conventions used by Yices are explained in Sec-
tion 3.3.2.

Unsupported Commands

Some commands defined in SMT-LIB 2.6 are optional. This version of Yices supports the
basic commands for declaration and definition of sorts and terms, assertions, satisfiability
checking, unsat cores and assumptions. Yices does not support the optional commands
get-assertions and get-proof.

Ignored Options

The standard requires option :produce-assignments to be set to true before the
command get-assignment can be issued. It also requires option :produce-models
to be set to true before using the command get-value. Yices does not enforce these
rules. It supports both commands get-assignment and get-value even if the corre-
sponding option is false.

67



Unsat Cores and Assumptions

Command get-unsat-core and get-unsat-assumptions are supported by Yices
since version 2.6.0. To activate these commands, options :produce-unsat-cores or
:produce-unsat-assumptions must be set. Yices does not allow both options to
be true at the same time.

In-line Definitions

In SMT-LIB 2.x, one can attach annotations to any term. In particular, one can give a name
to a term using the syntax

(! <term> :named <symbol>)

The <symbol> is a label attached to <term> and marks it as important for the command
get-assignment and get-unsat-core. The standard also requires such an anno-
tation to be treated as an in-line definition. When an annotated subterm (! <term>
:named <name>) is encountered while parsing a larger term t0, then the annotation
must be treated as if one had written

(define-fun <name> () <sort> <term>)

before the term t0. This unfortunate decision breaks well-established, common-sense rules
about the scope of identifiers. It also means that removing annotations can turn a syntacti-
cally correct formula into an incorrect one. It forces SMT-LIB solver to process annotations
even if they do not support the commands get-unsat-core and get-assignment,
which were the reason for attaching labels to terms in the first place. Other undesirable
consequences include the fact that simple syntactic transformations, for example, rewriting
(or a b) to (or b a), may be incorrect if a contains named annotations. In short,
this decision complicates implementation while providing little, if any, benefit.

Still, Yices supports in-line definitions, provided the <name> occurring in the annotation
is globally fresh. That is, the <name> must not be assigned via a previous global definition
or by a local let. For example, the following monstrosity will cause Yices to complain

(assert (let ((x (+ y 1))) (! (P (* 2 x))) :named x)))

because the symbol x is bound by the enclosing let when the annotated term is processed.

Miscellaneous Issues

The SMT-LIB 2.0 document states that option :print-success should be true by
default. This setting requires SMT solvers to report success after any command in a script.
This is fine for interactive use, but impractical when reading large input files (such as the
SMT-LIB benchmarks at http://www.smtlib.org). These input files typically con-
tain long sequences of declarations and definitions, and printing success after each of

68

http://www.smtlib.org


them is not useful or informative, and can generate hundreds of thousands if not millions of
lines of output. Like other solvers, Yices avoids these issues by setting :print-success
to false by default, unless command-line option --interactive is given.

SMT-LIB 2.0 includes two options for directing output and diagnostic information to other
channels than the default stdout and stderr. To send output to a file, you can use the
command

(set-option :regular-output-channel <filename>)

SMT-LIB 2.0 states that <filename> should follow the POSIX standard. Yices does not
check or enforce this requirement. You can use any character string that can be interpreted
as a file name by the underlying operating system.

6.2 SMT-LIB 1.2

Another tool included in the distribution can process input written in the SMT-LIB 1.2 no-
tation. This tool is called yices-smt (or yices-smt.exe on Windows or Cygwin). It
is included in the bin directory. This tool can process SMT problems written in version 1.2
of SMT-LIB, which is documented in [RT06]. This version of SMT-LIB was used in the
SMT competitions before 2010. Since 2010, the competitions have used SMT-LIB 2.0.

6.2.1 Tool Usage
To execute this solver on an input file in the SMT-LIB 1.2 format, just type:

yices-smt <input-file>

The solver will check satisfiability of the constraints in input-file and report either
sat or unsat. The input file must contain a specification in the SMT-LIB benchmark
language (cf. [RT06]). The standard also defines a theory language that is not supported by
yices-smt. If no input file is given, yices-smt will read standard input.

6.2.2 Command-Line Options

The following command-line options can be given to yices-smt.

--model, -m If this option is given, and the benchmark is satisfiable, yices-smt
will display a model.

This model may be partial. Some variables of the input benchmark may be eliminated by
preprocessing and formula simplification. The value of these variables is not displayed
in the model.

69



--full-model, -f Print a full model.

This causes yices-smt to display a model if the benchmark is satisfiable. Unlike
option --model, this option forces Yices to display a complete model. The value of
all variables declared in the input benchmark is displayed, even for variables that are
eliminated during preprocessing.

--verbose, -v Run in verbose mode.

The tool will print various statistics during the search.

--stats, -s Show statistics.

This causes yices-smt to display statistics about the search, including search time,
number of decisions and conflicts, and so forth.

--timeout=<int>, -t <int> Give a timeout in seconds.

For example, to run yices-smt with a 20 s timeout, use:

yices-smt --timeout=20 ...

--version, -V Display the version and exit.

--help, -h Show a summary of all options and exit.

70



Chapter 7

Yices API

You can use Yices in your software via a C-API. The main header file is yices.h which
includes all the API. The API functions are documented in this header file and at https:
//yices.csl.sri.com/. Since Yices 2.6.0, we also provide Python bindings to this
API. These bindings are included in the source distributions in directory src/bindings.

As sketched in Figure 4.1, the API provides three main classes of functions:

• Type and term constructors

• Operations on contexts

• Operations on models

The API also includes functions related to error reporting and diagnosis, global initialization
and cleanup, and garbage collection.

In the API, types and terms are identified by 32bit signed integers (the types type t and
term t are aliases for int32 t, as defined in file yices types.h). Other data struc-
tures internal to Yices are accessed via opaque pointers. For example, a context is an object
of the following type

typedef struct context_s context_t;

and all functions that operate on contexts take an argument of type context t *.

When an API function fails, it returns a special code. Term constructors return the constant
NULL TERM; type constructors return NULL TYPE. Other functions either return a nega-
tive integer or the NULL pointer. In addition, diagnostic information is stored in a global
data structure of type error report t (defined in yices types.h). The API pro-
vides functions to help diagnosis by printing error messages or consulting the error report
structure.

71

https://yices.csl.sri.com/
https://yices.csl.sri.com/


#include <stdio.h>
#include <yices.h>

int main(void) {
printf("Testing Yices %s (%s, %s)\n", yices_version,

yices_build_arch, yices_build_mode);
return 0;

}

Figure 7.1: Minimal Example

7.1 A Minimal Example

The distribution includes four header files:

• yices types.h defines all types that are part of the API, including a data structure
used for error reporting and a set of error codes.

• yices limits.h defines a few constants that set hard limits on the sizes of various
constructs. For example, this file defined the maximal arity of functions and the
maximal size of bitvector types supported by Yices.

• yices.h contains the declaration of all the API functions.

• yices exit codes.h lists the exit codes that can be returned by the Yices exe-
cutables (via an exit system call).

To use the library, it is enough to include yices.h in your code. This will also include
yices types.h and yices limits.h.

A minimal example is shown in Figure 7.1. Assuming the Yices library and header files are
in standard directories such as /usr/local/lib and /usr/local/include, this
code should compile with the following command:

gcc minimal.c -o minimal -lyices

Other compilers than GCC can be used. If Yices is installed in a non-standard location,
then give appropriate flags to the compilation command. For example, if Yices is installed
in your home directory:

gcc minimal.c -o minimal -I${HOME}/yices-2.2.0/include \
-L${HOME}/yices-2.2.0/lib -lyices

Running the program should print something like this:

Testing Yices 2.2.0 (x86_64-unknown-linux-gnu, release)

72



If you have built a version of Yices that’s dynamically linked against GMP, make sure to
install GMP on your system. If the Yices library is installed in a non-standard location, you
may also need to set environment variable LD LIBRARY PATH (or DYLD LIBRARY PATH
on Mac OS X).

7.2 Basic API Usage

The distribution includes a few simple examples that illustrate basic use of the Yices library.
The code fragments shown in this section come from file examples/example1.c in-
cluded in the distribution.

Global Initialization

Before doing anything with Yices, make sure to initialize all internal data structures by
calling function yices init. To avoid memory leaks, you should also call yices exit
at the end of your code to free all the memory that Yices has allocated internally.

Term Construction
Figure 7.2 shows code that builds two uninterpreted terms x and y of type int, then con-
structs the formula

(and (>= x 0) (>= y 0) (= (+ x y) 100))

This code fragment comes from file example1.c that is included in the distribution.

Pretty Printing

Once a term is constructed, we can print it as shown in Figure 7.3. This uses the pretty-
printing function yices pp term. The first argument to this function is the output file
to use (in this case, stdout). The second argument is the term to print. The other three
arguments define the pretty-printing area (in this case, a rectangle of 80 columns and 70
lines). The figure also shows how one checks for errors and prints an error message.

Building a Context and Checking Satisfiability

To check whether formula f constructed previously is satisfiable, we create a fresh context,
assert formula f in this context, then call function yices check context. This is
illustrated in Figure 7.4.

73



// Create two uninterpreted terms of type int.
type_t int_type = yices_int_type();
term_t x = yices_new_uninterpreted_term(int_type);
term_t y = yices_new_uninterpreted_term(int_type);

// Assign names "x" and "y" to these terms.
// This is optional, but we need the names in yices_parse_term
// and it makes pretty printing nicer.
yices_set_term_name(x, "x");
yices_set_term_name(y, "y");

// Build the formula (and (>= x 0) (>= y 0) (= (+ x y) 100))
term_t f = yices_and3(yices_arith_geq0_atom(x),

yices_arith_geq0_atom(y),
yices_arith_eq_atom(yices_add(x, y),

yices_int32(100)));

// Another way to do it
term_t f_var =

yices_parse_term("(and (>= x 0) (>= y 0) (= (+ x y) 100))");

Figure 7.2: Term Construction using the API

static void print_term(term_t term) {
int32_t code;

code = yices_pp_term(stdout, term, 80, 20, 0);
if (code < 0) {
// An error occurred
fprintf(stderr, "Error in print_term: ");
yices_print_error(stderr);
exit(1);

}
}

...

// print f and f_var: they should be identical
printf("Formula f\n");
print_term(f);
printf("Formula f_var\n");
print_term(f_var);

Figure 7.3: Pretty Printing a Term

74



context_t *ctx = yices_new_context(NULL);
code = yices_assert_formula(ctx, f);
if (code < 0) {
fprintf(stderr, "Assert failed: code = %"PRId32", error = %"PRId32"\n",

code, yices_error_code());
yices_print_error(stderr);

}

switch (yices_check_context(ctx, NULL)) {
case STATUS_SAT:
printf("The formula is satisfiable\n");
...
break;

case STATUS_UNSAT:
printf("The formula is not satisfiable\n");
break;

case STATUS_UNKNOWN:
printf("The status is unknown\n");
break;

case STATUS_IDLE:
case STATUS_SEARCHING:
case STATUS_INTERRUPTED:
case STATUS_ERROR:
fprintf(stderr, "Error in check_context\n");
yices_print_error(stderr);
break;

}
yices_free_context(ctx);

Figure 7.4: Checking Satisfiability

75



model_t *model = yices_get_model(ctx, true); // get the model
if (model == NULL) {

fprintf(stderr, "Error in get_model\n");
yices_print_error(stderr);

} else {
printf("Model\n");
code = yices_pp_model(stdout, model, 80, 4, 0); // print the model

int32_t v;
// get the value of x, we know it fits int32
code = yices_get_int32_value(model, x, &v);
if (code < 0) {
printf(stderr, "Error in get_int32_value for ’x’\n");
yices_print_error(stderr);

} else {
printf("Value of x = %"PRId32"\n", v);

}

// get the value of y
code = yices_get_int32_value(model, y, &v);
if (code < 0) {
fprintf(stderr, "Error in get_int32_value for ’y’\n");
yices_print_error(stderr);

} else {
printf("Value of y = %"PRId32"\n", v);

}

yices_free_model(model); // clean up: delete the model
}

Figure 7.5: Building and Querying a Model

Building and Querying a Model

If yices check context returns STATUS SAT (or STATUS UNKNOWN), then we can
construct a model of the asserted formulas as shown in Figure 7.5. The code also shows
how to print the model and how to evaluate the value of terms in a model.

7.3 Full API

The main header file yices.h includes documentation about all API functions. We pro-
vide more documentation on the Yices website: https://yices.csl.sri.com/.

76

https://yices.csl.sri.com/


Bibliography

[BBL08] R. Brummayer, A. Biere, and F. Lonsing. BTOR: Bit-Precise Modelling of
Word-Level Problems for Model Checking. In First International Workshop
on Bit-Precise Reasoning, pages 53–64, 2008. Available at http://fmv.
jku.at/BrummayerBiereLonsing-BPR08.pdf.

[BFT15] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.5. Technical report, SMT-LIB Initiative, 2015. Available at http:
//www.smtlib.org.

[BFT17] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.6. Technical report, SMT-LIB Initiative, 2017. Available at http:
//www.smtlib.org.

[Bie19] Armin Biere. CaDiCaL at the SAT Race 2019. In Proceedings of SAT
Race 2019: Solver and Benchmark Descriptions, volume B-2019-1 of De-
partment of Computer Science Series of Publications, pages 8–9. University
of Helsinki, 2019. https://helda.helsinki.fi//bitstream/
handle/10138/308034/sr2019_proceedings.pdf.

[BST12] Clark Barrett, Aaron Sump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, SMT-LIB Initiative, 2012. Available at http:
//www.smtlib.org.

[Cok13] David R. Cok. The SMT-LIBv2 Language and Tools: A Tutorial. Techni-
cal report, GrammaTech, Inc., March 2013. Available at http://www.
grammatech.com/resource/smt/SMTLIBTutorial.pdf.

[DdM06a] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Computer-Aided Verification (CAV’2006), volume 4144 of Lec-
ture Notes in Computer Science, pages 81–94. Springer Verlag, August 2006.

[DdM06b] Bruno Dutertre and Leonardo de Moura. Integrating Simplex with DPLL(T).
Technical Report SRI-CSL-06-01, Computer Science Laboratory, SRI In-

77

http://fmv.jku.at/BrummayerBiereLonsing-BPR08.pdf
http://fmv.jku.at/BrummayerBiereLonsing-BPR08.pdf
http://www.smtlib.org
http://www.smtlib.org
http://www.smtlib.org
http://www.smtlib.org
https://helda.helsinki.fi//bitstream/handle/10138/308034/sr2019_proceedings.pdf
https://helda.helsinki.fi//bitstream/handle/10138/308034/sr2019_proceedings.pdf
http://www.smtlib.org
http://www.smtlib.org
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf


ternational, May 2006. Available at http://yices.csl.sri.com/
sri-csl-06-01.pdf.

[DFMWP11] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlo-
gel Paelo. Expoiting symmetry in SMT problems. In Automated Deduc-
tion – CADE 23, volume 6803 of Lecture Notes in Computer Science, pages
222–236. Springer, 2011.

[dMJ12] Leonardo de Moura and Dejan Jovanović. Solving non-linear arithmetic. In
International Joint Conference on Automated Deduction (IJCAR 2012), vol-
ume 7364 of Lecture Notes in Computer Science, pages 339–354. Springer,
2012.

[dMJ13] Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiabil-
ity calculus. In Verification, Model Checking, and Abstract Interpretation
(VMCAI 2013), volume 7737 of Lecture Notes in Computer Science, pages
1–12. Springer, 2013.

[DNS05] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a Theorem Prover for
Program Checking. Journal of the ACM, 52(3):365–473, May 2005.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes in
Computer Science, pages 737–744. Springer, July 2014.

[GSD+14] Adrià Gascón, Pramod Subramanyan, Bruno Dutertre, Ashish Tiwari, De-
jan Jovanović, and Sharad Malik. Template-based circuit understand-
ing. In Koen Claessen and Viktor Kuncak, editors, Formal Methods
in Computer-Aided Design (FMCAD 2014), pages 83–90, October 2014.
Available at http://www.cs.utexas.edu/users/hunt/FMCAD/
FMCAD14/proceedings/17_gascon.pdf.

[JBdM13] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. The design and
implementation of the model constructing satisfiability calculus. In Barbara
Jobstmann and Sandeep Ray, editors, Formal Methods in Computer-Aided
Design (FMCAD 2013), pages 173–180, October 2013.

[JD17] Dejan Jovanović and Bruno Dutertre. LIBPOLY: A Library for Reasoning
about Polynomials. In Proceedings of the 15th International Workshop on
Satisfiability Modulo Theories (SMT 2017), 2017.

[NO79] G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

78

http://yices.csl.sri.com/sri-csl-06-01.pdf
http://yices.csl.sri.com/sri-csl-06-01.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14/proceedings/17_gascon.pdf
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14/proceedings/17_gascon.pdf


[NO07] Robert Neuwenhuis and Albert Oliveras. Fast Congruence Closure and Ex-
tensions. Information and Computation, 205(4):557–580, April 2007.

[RT06] Silvio Ranise and Cesare Tinelli. The SMT-LIB Standard: Version 1.2.
Technical report, SMT-LIB Initiative, 2006. Available at http://www.
smtlib.org.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers
to Cryptographic Problems. In Oliver Kullmann, editor, Theory and Appli-
cations of Satisfiability Testing (SAT 2009), volume 5584 of Lecture Notes in
Computer Science, pages 244–257. Springer, 2009.

[Som98] Fabio Somenzi. CUDD: CU Decision Diagram Package. University of Col-
orado at Boulder, 1998.

79

http://www.smtlib.org
http://www.smtlib.org


80



Appendix A

License Terms

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.
The licenses for most software and other practical works are designed to take away your free-

dom to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the GNU General Public License
for most of our software; it applies also to any other work released this way by its authors. You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs, and that you know you can do
these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on
the software, and (2) offer you this License giving you legal permission to copy, distribute and/or
modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions be

81



marked as changed, so that their problems will not be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to install or run modified versions of the soft-
ware inside them, although the manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users’ freedom to change the software. The systematic pattern of such abuse oc-
curs in the area of products for individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the practice for those products. If
such problems arise substantially in other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
that do, we wish to avoid the special danger that patents applied to a free program could make it
effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the
program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.
“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.
To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.
A “covered work” means either the unmodified Program or a work based on the Program.
To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying, distri-
bution (with or without modification), making available to the public, and in some countries
other activities as well.
To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer of
a copy, is not conveying.
An interactive user interface displays “Appropriate Legal Notices” to the extent that it in-
cludes a convenient and prominently visible feature that (1) displays an appropriate copyright
notice, and (2) tells the user that there is no warranty for the work (except to the extent that
warranties are provided), that licensees may convey the work under this License, and how to
view a copy of this License. If the interface presents a list of user commands or options, such
as a menu, a prominent item in the list meets this criterion.

1. Source Code.

82



The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.
A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.
The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with
that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means
a major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.
The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s Sys-
tem Libraries, or general-purpose tools or generally available free programs which are used
unmodified in performing those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files associated with source files for the
work, and the source code for shared libraries and dynamically linked subprograms that the
work is specifically designed to require, such as by intimate data communication or control
flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and
are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered
work is covered by this License only if the output, given its content, constitutes a covered
work. This License acknowledges your rights of fair use or other equivalent, as provided by
copyright law.
You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others
for the sole purpose of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with the terms of this Li-
cense in conveying all material for which you do not control copyright. Those thus making
or running the covered works for you must do so exclusively on your behalf, under your di-
rection and control, on terms that prohibit them from making any copies of your copyrighted
material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

83



No covered work shall be deemed part of an effective technological measure under any appli-
cable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights un-
der this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users, your
or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appro-
priate copyright notice; keep intact all notices stating that this License and any non-permissive
terms added in accord with section 7 apply to the code; keep intact all notices of the absence
of any warranty; and give all recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a rele-
vant date.

(b) The work must carry prominent notices stating that it is released under this License and
any conditions added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal No-
tices; however, if the Program has interactive interfaces that do not display Appropriate
Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

6. Conveying Non-Source Forms.

84



You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms
of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code
is a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Correspond-
ing Source as a System Library, need not be included in conveying the object code work.
A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which
the particular user actually uses, or expects or is expected to use, the product. A product is
a consumer product regardless of whether the product has substantial commercial, industrial
or non-consumer uses, unless such uses represent the only significant mode of use of the
product.
“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work

85



in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use
in, a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for
a fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement to con-
tinue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed.
Access to a network may be denied when the modification itself materially and adversely
affects the operation of the network or violates the rules and protocols for communication
across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

(d) Limiting the use for publicity purposes of names of licensors or authors of the material;
or

86



(e) Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who con-
veys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you
may remove that term. If a license document contains a further restriction but permits reli-
censing or conveying under this License, you may add to a covered work material governed
by the terms of that license document, provided that the further restriction does not survive
such relicensing or conveying.
If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been termi-
nated and not permanently reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-
peer transmission to receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify any covered work.
These actions infringe copyright if you do not accept this License. Therefore, by modifying
or propagating a covered work, you indicate your acceptance of this License to do so.

87



10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are
not responsible for enforcing compliance by third parties with this License.
An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of
a covered work results from an entity transaction, each party to that transaction who receives
a copy of the work also receives whatever licenses to the work the party’s predecessor in
interest had or could give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if the predecessor has it
or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge
for exercise of rights granted under this License, and you may not initiate litigation (including
a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by
making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.
A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of
the contributor version. For purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of
this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to
downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of
the covered work in a country, would infringe one or more identifiable patents in that country
that you have reason to believe are valid.

88



If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.
A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a
party to an arrangement with a third party that is in the business of distributing software, under
which you make payment to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily for and
in connection with specific products or compilations that contain the covered work, unless
you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable patent
law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that con-
tradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your obliga-
tions under this License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you to collect a royalty
for further conveying from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely from conveying the
Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work, but the special require-
ments of the GNU Affero General Public License, section 13, concerning interaction through
a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version
or of any later version published by the Free Software Foundation. If the Program does not
specify a version number of the GNU General Public License, you may choose any version
ever published by the Free Software Foundation.

89



If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version perma-
nently authorizes you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no addi-
tional obligations are imposed on any author or copyright holder as a result of your choosing
to follow a later version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.
To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively state the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

90



<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts
in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a GUI
interface, you would use an “about box”.
You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how
to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.
The GNU General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
https://www.gnu.org/licenses/why-not-lgpl.html.

91


	Introduction
	Download and Installation
	Binary Distributions
	Source Distribution

	Content of the Distributions
	Language Bindings
	Supported Logics
	Getting Help and Reporting Bugs

	Building Yices 2 from Source
	Basic Build
	MCSAT Support
	Third-Party SAT Solvers
	Thread-Safe API
	Building for Windows
	Manual and Documentation

	Yices 2 Logic
	Type System
	Terms and Formulas
	Theories
	Arithmetic
	Bitvectors


	Yices 2 Architecture
	Main Components
	Solvers
	Context Configurations
	MCSAT
	Third-Party SAT Solvers

	Yices Tool
	Example
	Exists/Forall Problems
	Unsat Cores
	Labeled Assertions
	Check With Assumptions

	Tool Invocation
	Input Language
	Lexical Elements
	Declarations
	Types
	Terms
	Commands


	Support for SMT-LIB
	SMT-LIB 2.x
	Tool Invocation
	SMT-LIB 2.6 Compliance

	SMT-LIB 1.2
	Tool Usage
	Command-Line Options


	Yices API
	A Minimal Example
	Basic API Usage
	Full API

	License Terms

