
CSL Technical Report • July 26, 2012

Yices 2 Manual

Bruno Dutertre
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Contents

Contents iii

1 Introduction 1

2 Yices 2 Language 3
2.1 Type System . 3
2.2 Terms and Formulas . 4
2.3 Supported Theories . 5

2.3.1 Arithmetic . 5
2.3.2 Bitvectors . 7

3 Yices 2 Architecture 9
3.1 Main Components . 9
3.2 Solvers . 10

4 yices 13

5 yices-smt 15

6 Yices API 17

7 Yices License Terms 19

Bibliography 23

iii

iv

Chapter 1

Introduction

This manual is an introduction to the logic, language, and architecture of the Yices 2 SMT
solver. Yices is developed in SRI International’s Computer Science Laboratory and is dis-
tributed free-of-charge for personal use, under the terms of the Yices License 7. To discuss
alternative license terms, please contact us at fm-license@csl.sri.com.

Yices can be downloaded at http://yices.csl.sri.com. The Yices website
provides the latest release and information about Yices. For bug reports and questions
about Yices, please contact us via the Yices mailing lists:

• To report a bug, send e-mail to yices-bugs@csl.sri.com.

Please include enough information in your bug report to enable us to reproduce the
problem.

• If you have any questions about Yices usage or installation, send e-mail to
yices-help@csl.sri.com.

1

http://yices.csl.sri.com

2

Chapter 2

Yices 2 Language

Yices 2 specifications are written in a typed logic. The language is intended to be simple
enough for efficient processing by the tool and expressive enough for most applications.
The Yices 2 language is similar to the logic supported by Yices 1, but the most complex
type constructs have been removed.

2.1 Type System

Yices 2 has a few built-in types for primitive objects:

• The arithmetic types int and real

• The Boolean type bool

• The type (bitvector k) of bitvectors of size k, where k is a positive integer.

All these built-in types are atomic. The set of atomic types can be extended by declaring
new uninterpreted types and scalar types. An uninterpreted type denotes a nonempty col-
lection of objects with no cardinality constraint. A scalar type denotes a nonempty, finite
set of objects. The cardinality of a scalar type is defined when the type is created.

In addition to the atomic types, Yices 2 provides constructors for tuple and function
types. The set of all Yices 2 types can be defined inductively as follows:

• Any atomic type τ is a type.

• If n > 0 and σ1, . . . , σn are n types, then σ = (σ1 × . . .× σn) is a type. Objects of
type σ are tuples (x1, . . . , xn) where xi is an object of type σi.

• If n > 0 and σ1, . . . , σn and τ are types, then σ = (σ1 × . . . × σn → τ) is a type.
Objects of type σ are functions of domain σ1 × . . .× σn and range τ .

3

By construction, all the types are nonempty. Yices does not have a specific type constructor
for arrays since the logic does not distinguish between arrays and functions. For example,
an array indexed by integers is simply a function of domain int.

Yices 2 uses a simple form of subtyping. Given two types σ and τ , let σ < τ denote
that σ is a subtype of τ . Then the subtype relation is defined by the following rules:

• τ < τ (any type is a subtype of itself)

• int < real (the integers form a subtype of the reals)

• If σ1 < τ1, . . . , σn < τn then (σ1 × . . .× σn) < (τ1 × . . .× τn).

• If τ < τ ′ then (σ1 × . . .× σn → τ) < (σ1 × . . .× σn → τ ′).

For example, the type (int× int) (pairs of integers) is a subtype of (real× real) (pairs
of reals).

Two types, τ and τ ′, are said to be compatible if they have a common supertype, that
is, if there exists a type σ such that τ < σ and τ ′ < σ. If that is the case, then there exists
a unique minimal supertype among all the common supertypes. We denote the minimal
supertype of τ and τ ′ by τ t τ ′. By definition, we then have

τ < σ and τ ′ < σ ⇒ τ t τ ′ < σ.

For example, the tuple types τ = (int × real × int) and τ = (int × int × real)
are compatible. Their minimal supertype is τ t τ ′ = (int × real × real). The type
(real× real× real) is also a common supertype of τ and τ ′ but it is not minimal.

2.2 Terms and Formulas

In Yices 2, the atomic terms include the Boolean constants (true and false) as well as
arithmetic and bitvector constants.

When a scalar type τ of cardinality n is declared, n distinct constant c1, . . . , cn of type
τ are also implicitly defined. In the Yices 2 syntax, this is done via a declaration of the
form:

(define-type tau (scalar c1 ... cn))

An equivalent functionality is provided by the Yices API. The API allows one to create a
new scalar type and to access n constants of that type indexed by integers between 0 and
n− 1 (check file include/yices.h for explanations).

The user can also declare uninterpreted constants of arbitrary types. Informally, unin-
terpreted constants of type τ can be considered like global variables, but Yices (in particular
the Yices API) makes a distinction between variables of type τ and uninterpreted constants

4

of type τ . In the Yices API, variables are used to build quantified expressions and to support
term substitutions. Free variables are not allowed to occur in assertions.

The term constructors include the common Boolean operators (conjunction, disjunction,
negation, implication, etc.), an if-then-else constructor, equality, function application, and
tuple constructor and projection. In addition, Yices provides an update operator that can
be applied to arbitrary functions. The type-checking rules for these primitive operators are
described in Figure 2.1, where the notation t :: τ means “term t has type τ”.

There are no separate syntax or constructors for formulas. In Yices 2, a formula is
simply a term of Boolean type.

The semantics of most of these operators is standard. The update operator for functions
is characterized by the following axioms1:

((update f t1 . . . tn v) t1 . . . tn) = v

u1 6= t1 ∨ . . . ∨ un 6= tn ⇒ ((update f t1 . . . tn v) u1 . . . un) = (f u1 . . . un)

In other words, (update f t1 . . . tn v) is the function equal to f at all points except
(t1, . . . , tn). Informally, if f is interpreted as an array then the update corresponds to “stor-
ing” v at position t1, . . . , tn in the array. Reading the content of the array is nothing other
than function application: (f i1 . . . in) is the content of the array at position i1, . . . , in.

The full Yices 2 language has a few more operators not described here, and it includes
existential and universal quantifiers. We do not describe the type-checking rules for quanti-
fiers here since Yices 2 does not have a solver for quantified formulas at this point.

2.3 Supported Theories

In addition to the generic operators presented previously, the Yices language includes the
standard arithmetic operators and a rich set of bitvector operators.

2.3.1 Arithmetic

Arithmetic constants are arbitrary precision integers and rationals. Although Yices uses
exact arithmetic, rational constants can be written using standard floating-point notation.
Internally, Yices converts floating-point input to rationals. For example, the floating-point
expression 3.04e− 1 is converted to 304/1000.

The Yices language supports the traditional arithmetic operators (i.e., addition, subtrac-
tion, multiplication) with the exception that it does not allow division by a non constant,
to avoid issues related to division by zero. For example, the expression (x + 4y)/3 is al-
lowed, but 3/(x+4y) is not. The arithmetic predicates are the usual comparison operators,
including both strict and nonstrict inequalities.

1These are the main axioms of the McCarthy theory of arrays.

5

Boolean Operators

t :: bool

(not t) :: bool

t1 :: bool t2 :: bool

(implies t1 t2) :: bool

t1 :: bool . . . tn :: bool

(or t1 . . . tn) :: bool

t1 :: bool . . . tn :: bool

(and t1 . . . tn) :: bool

Equality

t1 :: τ1 t2 :: τ2
(t1 = t2) :: bool

provided τ1 and τ2 are compatible

If-then-else

c :: bool t1 :: τ1 t2 :: τ2
(ite c t1 t2) :: τ1 t τ2

provided τ1 and τ2 are compatible

Tuple Constructor and Projection

t1 :: τ1 . . . tn :: τn
(tuple t1 . . . tn) :: (τ1 × . . .× τn)

t :: (τ1 × . . .× τn)
(selecti t) :: τi

Function Application

f :: (τ1 × . . .× τn → τ) t1 :: σ1 . . . tn :: σn σ1 < τ1 . . . σn < τn
(f t1 . . . tn) :: τ

Function Update

f :: (τ1 × . . .× τn → τ) t1 :: σ1 . . . tn :: σn v :: σ σi < τi σ < τ

(update f t1 . . . tn v) :: (τ1 × . . .× τn → τ)

Figure 2.1: Primitive Operators and Type Checking

6

The language allows nonlinear polynomials but this is not fully supported by the tool
at this time. Yices 2 can solve problems involving real and integer linear arithmetic, but it
does not yet include a solver for nonlinear arithmetic.

2.3.2 Bitvectors

Yices supports all the bitvector operators defined in the SMT-LIB standard [RT06]. The
most commonly used operators are listed in Table 2.1. They include bitvector arith-
metic (where bitvectors are interpreted either as unsigned integers or as signed integers
in two’s complement representation), logical operators such as bitwise OR or AND, logi-
cal and arithmetic shifts, concatenation, and extraction of subvectors. Other operators are
defined in the theory QF BV of SMT-LIB (cf. http://combination.cs.uiowa.
edu/smtlib); all of them are supported by Yices 2.

The semantics of all the bitvector operators is defined in the SMT-LIB 1.2 standard.
Yices 2 follows the standard except for the case of division by zero. In SMT-LIB, the result
of a division by zero is an unspecified value, but one must ensure that the division operators
are functional. In other words, SMT-LIB does not specify the result of (bvudiv a b) if
b is the zero vector, but (bvudiv a b) and (bvudiv c b) must be equal whenever a = c,
even if b is the zero vector. Yices 2 uses a simpler semantics (inspired from the BTOR
format [BBL08]):

• Unsigned Division: If b is the zero bitvector of n bits then

(bvudiv a b) = 0b111...1

(bvurem a b) = a

In general, the quotient (bvudiv a b) is the largest unsigned integer that can be rep-
resented on n bits, and is smaller than a/b, and the following identity holds for all
bitvectors a and b

a = (bvadd (bvmul (bvudiv a b) b) (bvurem a b)).

• Signed Division: If b is the zero bitvector of n bits then

(bvsdiv a b) = 0b000..01 if a is negative

(bvsdiv a b) = 0b111...1 if a is non-negative

(bvsrem a b) = a

(bvsmod a b) = a

7

http://combination.cs.uiowa.edu/smtlib
http://combination.cs.uiowa.edu/smtlib

Operator and Type Meaning
bvadd :: ((bv n)× (bv n)→ (bv n)) addition
bvsub :: ((bv n)× (bv n)→ (bv n)) subtraction
bvmul :: ((bv n)× (bv n)→ (bv n)) multiplication
bvneg :: bv n)→ (bv n)) 2’s complement opposite
bvudiv :: ((bv n)× (bv n)→ (bv n)) quotient in unsigned division
bvudiv :: ((bv n)× (bv n)→ (bv n)) remainder in unsigned division
bvsdiv :: ((bv n)× (bv n)→ (bv n)) quotient in signed division

with rounding toward zero
bvsrem :: ((bv n)× (bv n)→ (bv n)) remainder in signed division

with rounding toward zero
bvsmod :: ((bv n)× (bv n)→ (bv n)) remainder in signed division

with rounding toward −∞
bvule :: ((bv n)× (bv n)→ bool unsigned less than or equal
bvuge :: ((bv n)× (bv n)→ bool unsigned greater than or equal
bvult :: ((bv n)× (bv n)→ bool unsigned less than
bvugt :: ((bv n)× (bv n)→ bool unsigned greater than
bvsle :: ((bv n)× (bv n)→ bool unsigned less than or equal
bvsge :: ((bv n)× (bv n)→ bool unsigned greater than or equal
bvslt :: ((bv n)× (bv n)→ bool unsigned less than
bvsgt :: ((bv n)× (bv n)→ bool unsigned greater than
bvand :: ((bv n)× (bv n)→ (bv n)) bitwise and
bvor :: ((bv n)× (bv n)→ (bv n)) bitwise or
bvnot :: ((bv n)→ (bv n)) bitwise negation
bvxor :: ((bv n)× (bv n)→ (bv n)) bitwise exclusive or
bvshl :: ((bv n)× (bv n)→ (bv n)) shift left
bvlshr :: ((bv n)× (bv n)→ (bv n)) logical shift right
bvashr :: ((bv n)× (bv n)→ (bv n)) arithmetic shift right
bvconcat :: ((bv n)× (bvm)→ (bv n+m)) concatenation
bvextracti,j((bv n)→ (bvm)) extract bits i down to j

form a bitvector of size n

Table 2.1: Bitvector Operators

8

Chapter 3

Yices 2 Architecture

Yices 2 relies on a simpler language and type system than Yices 1. We have also com-
pletely redesigned the architecture to make Yices 2 easier to maintain and develop. The
new architecture supports new features, such as the possibility to maintain several contexts
in parallel.

3.1 Main Components

The Yices 2 software can be conceptually decomposed into three main modules:

Term Database Yices 2 maintains a global database in which all terms and types are
stored. Yices 2 provides an API for constructing terms, formulas, and types in this
database.

Context Management A context is a central data structure that stores asserted formulas.
Each context contains a set of assertions to be checked for satisfiability. The context-
management API supports operations for creating and initializing contexts, for as-
serting formulas into a context, and for checking the satisfiability of the asserted
formulas. Several contexts can be constructed and manipulated independently.

Contexts are highly customizable. Each context can be configured to support a spe-
cific theory, and to use a specific solver or combination of solvers.

Model Management If the set of formulas asserted in a context is satisfiable, then one
can construct a model of the formulas. The model maps symbols of the formulas
to concrete values (e.g., integer or rational values or bitvector constants). The API
provides functions to build and query models.

Figure 3.1 shows the top-level architecture of Yices 2, divided into the three main mod-
ules. Each context consists of two separate components: The solver employs a Boolean
satisfiability solver and decision procedures for determining whether the formulas asserted

9

Internalizer Solver

Internalizer Solver

Term Construction

Term/Type
Database

Context Management

Contexts

Model Management

Model

Model

Model

Figure 3.1: Top-level Yices 2 Architecture

in the context are satisfiable. The internalizer converts the format used by the term database
into the internal format used by the solver. In particular, the internalizer rewrites all formu-
las in conjunctive normal form, which is used by the internal SAT solver.

3.2 Solvers

In Yices 2, it is possible to select a different solver (or combination of solvers) for the
problem of interest. Each context can thus be configured for a specific class of formulas. For
example, one can use a solver specialized for linear arithmetic, or use a solver that supports
the full Yices 2 language. Figure 3.2 shows how the most general solver is built. A major
component of all solvers is a SAT solver based on the Davis-Putnam-Logemann-Loveland
(DPLL) procedure. The SAT solver is coupled with one or more so-called theory solvers.
Each theory solver implements a decision procedure for a particular theory. Currently,
Yices 2 includes four main theory solvers:

• The UF Solver deals with the theory of uninterpreted functions with equality1. It
implements a decision procedure based on computing congruence closures, similar
to the Simplify system [DNS05].

1UF stands for uninterpreted functions.

10

DPLL
SAT

Solver

CORE
(UF Solver)

Arithmetic

Bitvector

Array/Fun

Solver

Solver

Solver

Figure 3.2: Solver Components

• The Arithmetic Solver deals with linear integer and real arithmetic. It implements a
decision procedure based on the Simplex algorithm [DdM06a, DdM06b].

• The Bitvector Solver deals with the theory of bitvectors.

• The Array Solver implements a decision procedure for McCarthy’s theory of arrays.

Yices 2 employs a modular solver architecture. It is possible to remove some of the
components of Figure 3.2 to build simpler and more efficient solvers that are specialized
for specific classes of formulas. For example, a solver for pure arithmetic can be built by
directly attaching the arithmetic solver to the DPLL SAT solver. Similarly, Yices 2 can be
specialized for pure bitvector problems, or for problems combining uninterpreted functions,
arrays, and bitvectors (by removing the arithmetic solver).

Yices 2 combines several theory solver using the Nelson-Oppen method [NO79]. The
UF solver is essential for this purpose; it coordinates the different theory solvers and ensures
global consistency. The other solvers (for arithmetic, arrays, and bitvectors) communicate
only with the central UF solver and never directly with each other. This property consider-
ably simplifies the design and implementation of theory solvers.

11

12

Chapter 4

yices

The Yices 2 distribution includes a tool for processing input written in the Yices 2 lan-
guage. This tool is callled yices (or yices.exe in the Windows and Cygwin distribu-
tions). The syntax and the set of commands supported by yices are explained in the file
doc/YICES-LANGUAGE included in the distribution. Several example specifications are
also included in the examples/ directory.

By default, the yices tool supports the combination of arithmetic, uninterpreted func-
tions and arrays. It builds a context that includes the Simplex, UF, and Array solvers. This
can be changed by giving command-line arguments to the tool. Try yices --help for
more details.

13

14

Chapter 5

yices-smt

Another tool included in the distribution can process input written in the SMT-LIB notation.
This tool is called yices-smt (or yices-smt.exe). It is included in the bin directory.
Currently, this tool supports version 1.2 of SMT-LIB. Support for the more recent SMT-
LIB 2 will be provided in future releases.

15

16

Chapter 6

Yices API

The distribution includes a library and header files for embedding Yices in other software.
The main header file is yices.h which includes all the API. The API functions are docu-
mented in this header file. More complete and detailed documentation on the Yices 2 API
will be provided at the Yices website http://yices.csl.sri.com/.

17

http://yices.csl.sri.com/

18

Chapter 7

Yices License Terms

Before downloading and using Yices, you will be asked to agree to the Yices license terms
reproduced below. SRI is open to distributing Yices under other agreements. Contact us at
fm-licencing@csl.sri.com to discuss alternative licence terms.

END-USER LICENSE AGREEMENT

IMPORTANT - READ CAREFULLY. Be sure to carefully read and understand
all of the rights and restrictions described in this End-User License
Agreement ("EULA"). You will be asked to review and either accept or
not accept the terms of the EULA. You will not be permitted to access
or use the Software unless or until you accept the terms of the EULA.
Alternative license terms may be available to you by contacting
fm-licensing@csl.sri.com.

This EULA is a legal agreement between you (either an individual or a
single entity) and SRI International ("SRI") for the software referred
to by SRI as "Yices", which includes the computer software accessible
via this web browser interface, and may include associated media,
printed materials and any "online" or electronic documentation
("Software"). By utilizing the Software, you agree to be bound by the
terms of this EULA. If you do not agree to the terms of this EULA,
you may not access or use the Software.

GRANT OF LIMITED LICENSE. SRI hereby grants to you a personal,
non-exclusive, non-transferable, royalty-free license to access and
use the Software for your own internal purposes. The Software is
licensed to you, and such license does not constitute a sale of the
Software. SRI reserves the right to release the Software under
different license terms or to stop distributing or providing access to
the Software at any time.

RESTRICTIONS. You may not: (i) distribute, sublicense, rent or lease
the Software; (ii) modify, adapt, translate, reverse engineer,
decompile, disassemble or create derivative works based on the

19

Software; or (iii) create more than one (1) copy of the Software or
any related documentation.

OWNERSHIP. SRI is the sole owner of the Software. You agree that SRI
retains title to and ownership of the Software and that you will keep
confidential and use your best efforts to prevent and protect the
Software from unauthorized access, use or disclosure. All trademarks,
service marks, and trade names are proprietary to SRI. All rights not
expressly granted herein are hereby reserved.

TERMINATION. The EULA is effective upon the date you first use the
Software and shall continue until terminated as specified below. You
may terminate the EULA at any time prior to the natural expiration
date by destroying the Software and any and all related documentation
and copies and installations thereof, whether made under the terms of
these terms or otherwise. SRI may terminate the EULA if you fail to
comply with any condition of the EULA or at SRI’s discretion for good
cause. Upon termination, you must destroy the Software in your
possession, if any, and any and all copies thereof. In the event of
termination for any reason, the provisions set forth under the
paragraphs entitled DISCLAIMER OF ALL WARRANTIES, EXCLUSION OF ALL
DAMAGES, and LIMITATION AND RELEASE OF LIABILITY shall survive.

U.S. GOVERNMENT RESTRICTED RIGHTS. The Software is deemed to be
"commercial software" and "commercial computer software
documentation", respectively, pursuant to DFARS 227.7202 and FAR
12.212, as applicable. Any use, modification, reproduction, release,
performance, display, or disclosure of the Software by the
U.S. Government or any of its agencies or by a U.S. Government prime
contractor or subcontractor (at any tier) shall have only "Restricted
Rights", shall be governed solely by the terms of this EULA, and shall
be prohibited except to the extent expressly permitted by the terms of
this EULA.

DISCLAIMER OF ALL WARRANTIES. SRI PROVIDES THE SOFTWARE "AS IS" AND
WITH ALL FAULTS, AND HEREBY DISCLAIMS ALL OTHER WARRANTIES AND
CONDITIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO ANY (IF ANY) IMPLIED WARRANTIES OR CONDITIONS OF
MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF LACK OF
VIRUSES AND OF LACK OF NEGLIGENCE OR LACK OF WORKMANLIKE EFFORT.
ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, OF QUIET ENJOYMENT
OR OF NON-INFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR
PERFORMANCE OF THE SOFTWARE IS WITH YOU.

EXCLUSION OF ALL DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, IN NO EVENT SHALL SRI BE LIABLE FOR ANY CONSEQUENTIAL,
INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE OR OTHER DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR ANY INJURY TO
PERSON OR PROPERTY, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, FOR LOSS OF PRIVACY FOR

20

FAILURE TO MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF REASONABLE
CARE, FOR NEGLIGENCE AND FOR ANY PECUNIARY OR OTHER LOSS WHATSOEVER)
ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE
THE SOFTWARE, EVEN IF SRI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS EXCLUSION OF DAMAGES SHALL BE EFFECTIVE EVEN IF ANY
REMEDY FAILS OF ITS ESSENTIAL PURPOSE.

LIMITATION AND RELEASE OF LIABILITY. SRI has included in this EULA
terms that disclaim all warranties and liability for the Software. To
the full extent allowed by law, YOU HEREBY RELEASE SRI FROM ANY AND
ALL LIABILITY ARISING FROM OR RELATED TO ALL CLAIMS CONCERNING THE
SOFTWARE OR ITS USE. If you do not wish to accept access to the
Software under the terms of this EULA, do not access or use the
Software. No refund will be made because the SOFTWARE was provided to
you at no charge. Independent of, severable from, and to be enforced
independently of any other provision of this EULA, UNDER NO
CIRCUMSTANCE SHALL SRI’S aggregate LIABILITY TO YOU (INCLUDING
LIABILITY TO ANY THIRD PERSON OR PERSONS WHOSE CLAIM OR CLAIMS ARE
BASED ON OR DERIVED FROM A RIGHT OR RIGHTS CLAIMED BY YOU), WITH
RESPECT TO ANY AND ALL CLAIMS AT ANY AND ALL TIMES ARISING FROM OR
RELATED TO THE SUBJECT MATTER OF THIS EULA, IN CONTRACT, TORT, OR
OTHERWISE, EXCEED THE TOTAL AMOUNT ACTUALLY PAID BY YOU to SRI
pursuant to THIS EULA, IF ANY.

JURISDICTIONAL ISSUES. This Software is controlled by SRI from its
offices within the State of California. SRI makes no representation
that the Software is appropriate or available for use in other
locations. Those who choose to access this Software from other
locations do so at their own initiative and are responsible for
compliance with local laws, if and to the extent local laws are
applicable. You hereby acknowledge that the rights and obligations of
the EULA are subject to the laws and regulations of the United States
relating to the export of products and technical information. Without
limitation, you shall comply with all such laws and regulations,
including the restriction that the Software may not be accessed from,
used or otherwise exported or reexported (i) into (or to a national or
resident of) any country to which the U.S. has embargoed goods; or
(ii) to anyone on the U.S. Treasury Department’s list of Specialty
Designated Nationals or the U.S. Commerce Department’s Table of Deny
Orders. By accessing or using the Software, you represent and warrant
that you are not located in, under the control of, or a national or
resident of any such country on any such list.

Notice and Procedure for Making Claims of Copyright Infringement.
Pursuant to Title 17, United States Code, Section 512(c)(2),
notifications of claimed copyright infringement should be sent to SRI
International, Office of the General Counsel, 333 Ravenswood Ave.,
Menlo Park, CA 94025.

SUPPORT, UPDATES AND NEW RELEASES. The EULA does not grant you any

21

rights to any software support, enhancements or updates. Any updates
or new releases of the Software which SRI chooses at its own
discretion to distribute or provide access to shall be subject to the
terms hereof.

GENERAL INFORMATION. The EULA constitutes the entire agreement
between you and SRI and governs your access to and use of the
Software. The EULA shall not be modified except in writing by both
parties.

The EULA shall be governed by and construed in accordance with the
laws of the State of California, without regard to the conflicts of
law principles thereof. The parties shall resolve any disputes arising
out of this EULA, including disputes about the scope of this
arbitration provision, by final and binding arbitration seated and
held in San Francisco, California before a single arbitrator. JAMS
shall administer the arbitration under its comprehensive arbitration
rules and procedures. The arbitrator shall aware the prevailing party
its reasonable attorney’s fees and expenses, and its arbitration fees
and associated costs. Any court of competent jurisdiction may enter
judgment on the award.

If any provision of the EULA shall be deemed unlawful, void, or for
any reason unenforceable, then that provision shall be deemed
severable from these terms and shall not affect the validity and
enforceability of any remaining provisions.

In consideration of your use of the Software, you represent that you
are of legal age to form a binding contract and are not a person
barred from receiving services under the laws of the United States or
other applicable jurisdiction.

The failure of SRI to exercise or enforce any right or provision of
the EULA shall not constitute a waiver of such right or provision.

22

Bibliography

[BBL08] R. Brummayer, A. Biere, and F. Lonsing. BTOR: Bit-Precise Modelling of
Word-Level Problems for Model Checking. In First International Workshop on
Bit-Precise Reasoning, pages 53–64, 2008. Available at http://fmv.jku.
at/BrummayerBiereLonsing-BPR08.pdf. 7

[DdM06a] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Computer-Aided Verification (CAV’2006), volume 4144 of Lec-
ture Notes in Computer Science, pages 81–94. Springer Verlag, August 2006.
11

[DdM06b] Bruno Dutertre and Leonardo de Moura. Integrating Simplex with DPLL(T).
Technical Report SRI-CSL-06-01, Computer Science Laboratory, SRI In-
ternational, May 2006. Available at http://yices.csl.sri.com/
sri-csl-06-01.pdf. 11

[DNS05] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a Theorem Prover for Program
Checking. Journal of the ACM, 52(3):365–473, May 2005. 10

[NO79] G. Nelson and D. C. Oppen. Simplification by Cooperating Decision Proce-
dures. ACM Transactions on Programming Languages and Systems, 1(2):245–
257, 1979. 11

[RT06] Silvio Ranise and Cesare Tinelli. The SMT-LIB Standard: Version 1.2. Tech-
nical report, SMT-LIB Initiative, 2006. Available at http://www.smtlib.
org. 7

23

http://fmv.jku.at/BrummayerBiereLonsing-BPR08.pdf
http://fmv.jku.at/BrummayerBiereLonsing-BPR08.pdf
http://yices.csl.sri.com/sri-csl-06-01.pdf
http://yices.csl.sri.com/sri-csl-06-01.pdf
http://www.smtlib.org
http://www.smtlib.org

	Contents
	Introduction
	Yices 2 Language
	Type System
	Terms and Formulas
	Supported Theories
	Arithmetic
	Bitvectors

	Yices 2 Architecture
	Main Components
	Solvers

	yices
	yices-smt
	Yices API
	Yices License Terms
	Bibliography

